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Abstract 

In this master’s thesis, a Maxent based species distribution model was created to identify suitable 
habitats of the hazel grouse (Tetrastes bonasia) and to evaluate habitat suitability across Salzburg 
using presence records of the Naturpark-Weißbach and the Bavarian Saalforsten. The hazel grouse 
is a small and elusive grouse species inhabiting mountainous forests of central Europe, with the alps 
representing a major stronghold for European populations. Increased pressures from intensive 
forestry and other human land uses, fragment, degrade and isolate near-natural, structurally diverse 
forests, required by this bird. Understanding and spatially depicting these habitat requirements is 
essential for effective conservation management. The Maxent model was built using 34 presence 
records together with environmental predictors selected for ecological relevance to the hazel grouse. 
The final model indicated that habitat suitability was most strongly influenced by the aspect of 
slopes, as well as by the increasing distance to forest roads and the presence of mixed coniferous 
stands. Unexpectedly, increased vertical heterogeneity of forest structure, measured as the Gini-
coefficient of tree heights, was associated with reduced habitat suitability. Approximately 25 % (= 
665 km2) of Salzburg’s forested area was identified as suitable habitat for the hazel grouse, with larger 
continuous patches occurring primarily in the inner mountain valleys and more fragmented suitable 
areas found in the north of Salzburg. Suitable habitats were characterised by a higher proportion of 
mixed coniferous forest stands and reduced proportions of single-species deciduous forest stands, 
greater distance to forest roads, closer proximity to lotic waterbodies and a notable predominance 
of northern facing slopes. The results of this master’s thesis are intended to serve as a foundation for 
decision making regarding the conservation of hazel grouse populations and habitats in Salzburg. 
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Kurzfassung 

In dieser Masterarbeit wurde ein auf Maxent basiertes räumliches Lebensraummodell erstellt, um 
geeignete Lebensräume des Haselhuhns (Tetrastes bonasia) zu identifizieren und das 
Lebensraumpotenzial für das gesamte Bundesland Salzburg darzustellen. Das Haselhuhn ist eine 
kleine und seltene Raufußhuhnart, die in Gebirgswäldern Mitteleuropas, darunter im Alpenraum und 
Salzburg, heimisch ist. Aufgrund zunehmender Landnutzung in Form von intensiver 
Waldbewirtschaftung und anderen Formen anthropogener Landnutzung werden unabdingbare 
naturnahe Waldhabitate für Haselhühner immer weniger, fragmentierter und isolierter. Ein besseres 
Verständnis dieser Habitatansprüche sowie deren räumliche Verbreitung ist ein wesentlicher Aspekt 
für wirksame Artenschutz- und Managementkonzepte. Das Modell wurde auf Basis von 34 
Vorkommensnachweisen aus dem Naturpark-Weißbach und den bayerischen Saalforsten sowie 
ökologisch relevanten Umweltvariablen erstellt. Die Ergebnisse zeigen, dass das 
Lebensraumpotenzial insbesondere durch die Hangexposition, die Distanz zu Forststraßen sowie 
das Vorhandensein gemischter Koniferenbestände beeinflusst wird. Unerwartet zeigte sich, dass 
eine erhöhte vertikale Bestandsheterogenität, gemessen über den Gini-Koeffizienten der 
Baumhöhen, mit geringerem Lebensraumpotenzial einherging. Rund 25 % (= 665 km2) der Salzburger 
Waldfläche wurde als geeignet eingestuft, wobei größere, zusammenhängender Flächen vor allem in 
inneralpinen Tälern im Süden Salzburgs liegen, während im Norden vermehrt fragmentierte Habitate 
vorhanden sind. Geeignete Lebensräume waren gekennzeichnet durch einen höheren Anteil 
gemischter Nadelwälder, geringere Anteile reiner Laubwälder, größere Distanzen zu Forststraßen, 
die Nähe zu Fließgewässern sowie ein überwiegen nördlich exponierter Hänge. Die Ergebnisse dieser 
Arbeit dienen als Grundlage für zukünftige Schutz- und Managementmaßnahmen von Haselhühnern 
und deren Habitaten in Salzburg.
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1. Introduction 

European forests experienced a severe decline in extent and conditions throughout the 19th century 
and beyond, as expanding agricultural areas, demand for fuel and industrial purposes reduced 
continuous woodlands to highly fragmented forests stands (Pommerening et al. 2025). Beginning in 
the mid 20th century, forest ecosystems started to recover, largely driven by socioeconomic changes 
such as agricultural intensification, change of silvicultural practices and migration of people from 
rural areas into cities (Gingrich et al. 2022). This resulted in an increase of 25 % forest cover over the 
last 70 years and improved ecological quality throughout Europe (Fuchs et al. 2012). The Alpine 
region exemplifies this recovery trend. Over the past century, the abandonment of small-scale 
agricultural plots has allowed forests to recolonise former farmland at an average rate of 
approximately 0.64 % per year (Anselmetto et al. 2024). Despite these positive developments, 
increasing human land use pressures continue to fragment and degrade alpine forest ecosystems. 
Intensive silvicultural practices that include mandatory clearcutting and monoculture plantation 
simplify stand structure and diversity of forests, while the expansion of human infrastructure isolate 
habitat patches and influence disturbances. Landscape alterations such as these affect the 
ecological functions of forest ecosystems as well as overall biodiversity (Zimmermann et al. 2010; 
Pardini et al. 2017; Diaz et al. 2019). 

Among wildlife taxa in central Europe, the predominantly forest dwelling grouse-species of the tribe 
Tetraonini illustrate the responses to these dynamics: the Western capercaillie (Tetrao urogallus), 
the black grouse (Tetrao tetrix) and the hazel grouse (Tetrastes bonasia) and notably the rock 
ptarmigan (Lagopus muta) which is occurring above the treeline. All these grouse species are native 
to Austria and of conservation and management concern and particularly susceptible to habitat 
alterations (Ram et al. 2017). Mountainous regions of Europe such as the Pyrenees and the Alps 
represent the westernmost distribution of this group of forest birds, whose limited dispersal abilities, 
specific habitat requirements and life-histories presents them particularly vulnerable to habitat 
changes. Human land use in the form of intensive forest practices appears to be the strongest 
physical factor affecting habitats (Elvesveen et al. 2023), while disturbances through mountain 
tourism as well as anthropogenic infrastructures such as ski-lifts or wind power plants, have been 
shown to alter and often degrade the quality of grouse habitats (Hovick et al. 2014; Coppes et al. 
2019; Jäger et al. 2020). Within the European Union, hazel grouse, black grouse and capercaillie are 
categorised as “Vulnerable” by the ICUN Red List and the capercaillie as “Least concerned”, yet all 
species exhibit declining population trends (BirdLife-International 2021). 

Given the vulnerabilities and conservational importance of these forest grouse species, spatially 
explicit information on the potential distribution and habitat suitability is needed to guide monitoring 
efforts, aid in conservation- planning and to assess potential impacts of human land use, such as 
silvicultural practices and infrastructural planning. While there have been previous studies 
investigating the habitat use of capercaillie and black grouse in Austria (Zohmann et al. 2014; Sachser 
et al. 2017), almost no publicly accessible information on Austrian Hazel Grouse populations, 
conditions and distribution is available from within Austria, which is largely due to the birds elusive 
lifestyle and increasing rarity. However, large scale spatial information on the potential distribution 
of hazel grouse has been provided by Kunz et al. (2021) for the state of Styria, yet information on its 
potential distribution and habitats remain absent for most of Austria, including the state of Salzburg. 
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1.1. Hazel Grouse – Species Profile and Habitat Requirements 

The Hazel Grouse (Tetrastes bonasia) is the smallest member of the grouse species in Europe, native 
to the Palaearctic region. Its distribution is wide but patchy, spanning from central Europe eastwards 
across Eurasia up to northern Japan. In Europe, hazel grouse occupy montane coniferous-deciduous 
mixed forests, with large populations in Fennoscandia and mountainous regions of central Europe 
such as the Dinaric Mountains, Carpathians and the Alps (Rózsa et al. 2016). Austria, especially its 
alpine regions are considered important for hazel grouse in Central Europe. Data on population sizes 
and trends were originally published in 2018, estimating a national population size between 5000 to 
10000 breeding pairs. However, these figures may be imprecise and current number are probably 
lower due to the lack of systematic and comprehensive data not only in Austria, but for most of 
Europe (BirdLife-International 2024). 

The hazel grouse is protected under the EU Birds Directive (2009/147/EC), listed in both Annex I, 
requiring special habitat conservation measures, and Annex II, which allows for regulated hunting on 
a national level. In Austria hunting legislature and regulations are subject to federal-state level that 
implement species specific regulations, aligning with national and international conservation and 
species-protection laws. Currently, hazel grouse hunting is permitted in six of Austrias nine 
provinces. However, the province of Burgenland recorded the last official harvest in 1968, while the 
provinces of Vienna, Vorarlberg and Salzburg, have incrementally suspended hunting completely, 
with Salzburg being the last state to do so in 1995, implementing a year-round protection status. 
Provinces where hunting remains permitted are experiencing a reduction of annual harvest from 800 
individuals to 100 individuals per year from 1948 to 2022 (Reimoser 2024). According to the 
International Union for Conservation of Nature (IUCN), the hazel grouse is classified as “Least 
Concerned” in Europe, largely due to the inclusion of estimations from territories of the Russian 
Federation, which account for approximately 66 % of Europe’s total hazel grouse populations 
(BirdLife-International 2021). However, within the European Union, this forest-bird is classified as 
“Vulnerable” and exhibiting population decline or unknown trends across almost all its member-
states. 

Habitat Requirements and Vulnerabilities 

A habitat, as defined by Hall et al. (1997), are “the resources and conditions present in an area that 
produce occupancy, including survival and reproduction, by a given organism” and the hazel grouses 
requirements to its habitat are largely determined by its ground-dwelling and cryptic lifestyle. The 
availability of perennial food sources in addition to vegetation structures providing shelter, nesting 
sites and protective cover from predators are essential requirements on its habitat throughout the 
seasons. Previous studies have addressed the importance of structurally heterogeneous and 
complex forest stands, characterised by mixed-species composition and multi-layered vertical 
structures and variability in canopy-closure as aspects of high quality habitats (Åberg et al. 2003; 
Sitzia et al. 2014; Braunisch et al. 2019). 

While this species predominantly occupies conifer-dominated stands comprising of spruce (Picea 
abies) and often silver fir (Abies alba), a substantial dependency on deciduous tree species as food 
sources and shelter throughout the seasons has been documented (Mathys et al. 2006; Müller et al. 
2012). Deciduous species like poplar (Populus spp.), rowans (Sorbus spp.), and birch (Betula spp.), 
together with shrubs such as hazel (Coryllus avellana), willow (Salix spp.), and bilberry (Vaccinum 
spp.) provide essential food sources and breeding habitats during spring (Matysek et al. 2017). In the 
post-breeding period of autumn and in winter, the amount of deciduous tree species in habitats is 
reduced in favour of forest stands consisting of dense understories of young spruce together with 
shrubs providing cover(Sachot et al. 2003; Schäublin and Bollmann 2011; Ludwig and Klaus 2016). 
Forest stands undergoing early natural succession after experiencing disturbances such as bark-
beetle infestations, provide high-quality habitats for the hazel grouse (Kortmann et al. 2018). These 
areas are often colonised by pioneer-species such as elder and hazel provide both dense ground 
layer cover and food sources. In winter, early succession stages of coniferous stands become 
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particularly important for cover (Scridel et al. 2022). Additionally, the hazel grouse shows a 
preference for linear forest structures such as edges, forest aisles and riparian zones, as these 
structures enhance structural diversity in canopy-closure by supporting species like alnus, birch and 
alder among others (Müller et al. 2012; Matysek et al. 2019). Conversely, hazel grouse avoid open 
landscapes such as clear-cut areas, agricultural fields and transitional zones between forests and 
open-lands due to increased predation risk (Huhta et al. 2017). Human land use, particularly 
intensive silvicultural practices and touristic activity influence hazel grouse habitat selection as 
these birds have been shown to spatially avoid these areas (Matysek et al. 2020). A long term study 
focusing on a population in the bohemian forest report negative impact of intensive logging, clear-
cutting and removal of pioneer-species, causing habitat loss, increasing fragmentation and resulting 
in a population decline of approximately -3.8 % per year from 2006-2019 (Klaus and Ludwig 2021). 
The hazel grouse’s limited dispersal abilities enhance their vulnerability to habitat degradation and 
fragmentation (Sahlsten et al. 2010). Consequently, they require relatively large, continuous forest 
patches rather than small isolated high-quality habitats (Sahlsten et al. 2010; Åberg et al. 2011; 
Kajtoch et al. 2012). Such fragmentation and isolation dynamics have previously led to a decreased 
genetic diversity in a Carpathian hazel grouse population (Rutkowski et al. 2016), with similar findings 
affecting other European grouse species (Jimenez et al. 2022; Kunz et al. 2022). In order to assess 
and mitigate the impact of potential threats on hazel grouse habitats, large scale spatial analyses 
provide the foundation for applied conservation efforts by assessing the distribution and quality of 
potential habitats. 

1.2. Species Distribution Modelling and Maxent 

Species Distribution Models (SDMs) are statistical tools to predict the distribution of a species across 
a landscape in relation to environmental conditions often derived from satellite remote sensing data 
(Guisan and Zimmermann 2000; He et al. 2015). While there are several different families from which 
SDM’s can originate, the general approach of correlative models involves georeferenced spatial 
information in the form of presence-records of a species, often accompanied by corresponding 
absence-data, linked to topographic, climatic and other ecological habitat conditions of a species to 
model its distribution (Elith and Leathwick 2009). The outputs of SDM contribute to ecological insight 
about the spatial distribution of the target species and the quality of its habitats. Thereby, SDM’s 
allow for the identification of suitable areas for conservation measures, support spatial conservation 
planning by guiding monitoring, restoration and protection efforts and assist in decision-making by 
assessing the impact of management actions (Lawler et al. 2011; Guisan et al. 2013) including 
potential risk assessment regarding invasive species (Srivastava et al. 2019). 

Traditionally, SDM’s have relied on regression based approaches like generalised linear models or 
generalised additive models to predict a species probability of distribution by using the maximum 
likelihood method which often relies on absence data of the species to contrast against occurrences 
to create predictions (Norberg et al. 2019). However, obtaining robust absence-records can be 
problematic since differentiating between true-absences and non-detections can be 
methodologically difficult (Gu and Swihart 2004) and often resource intensive, particularly in wildlife 
sciences (MacKenzie 2005). However, in recent decades, due to theoretical and computational 
advancements, machine learning models such as random forests, artificial neural networks and 
maximum entropy (Maxent) (Phillips et al. 2006; Phillips and Dudík 2008) have become increasingly 
popular for managing large, complex datasets, such as remote sensing satellite data, to model 
species-environment relationships by using presence-only data (Zhang and Li 2017). 
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Maxent 

The species distribution modelling software Maxent, developed by Phillips et al. (2006) has 
established itself as one of the most widely used and well-performing presence-only modelling 
approaches, particularly in situations of rare and cryptic species with limited presence records (Fois 
et al. 2018; Radomski et al. 2022). Since its establishment, this software has been widely used and 
experienced a number of adaptations by the creators over the years, ultimately resulting in this 
software becoming open source, which led to numerous implementations in statistical software 
such as R (Phillips et al. 2017). 

Maxent employs the Maximum-Entropy-Method to estimate model parameters and to create 
predictions. In information theory, entropy quantifies the average uncertainty predicting an outcome 
of random variables, where the lowest entropy indicates perfect certainty and the highest entropy 
represents perfect uncertainty (Shannon 1948). In the context of species distribution modelling using 
Maxent, the maximum-entropy-method assumes a uniform prior distribution of uncertainty across 
the study areas, representing an equal a-priori uncertainty regarding the species occurrence. The 
model only deviates from this prior assumption by including empirical evidence of environmental 
conditions at known presence sites, estimating the corresponding habitat suitability values (Elith et 
al. 2010). An advantage of Maxent is its ability to produce predictions using presence-only data, 
contrasted against background points which are randomly sampled non-occurrence locations 
representing environmental conditions of potentially available habitats to the species. Additionally, 
the internal model tuning and regularisation parameters of Maxent penalise complexity, thereby 
preventing overfitting and overly complex models with regards to varying sample sizes. Additional 
features implemented into Maxent are the abilities to project or transfer a model fitted to specific 
environmental conditions onto different geographic areas (Phillips and Dudík 2008) as well as 
defining suitability-thresholds to binarize a continuous map to distinguish between 
“suitable/unsuitable” habitats or “presence/absence”, particularly for practical purposes (Phillips 
et al. 2006). These feature have been applied in previous studies to assess the invasion risk of non-
native species (Fernández and Hamilton 2015) and predicting climate change impacts on species 
distribution by transferring models trained on native or known ranges to novel areas or future 
scenarios (Karuppaiah et al. 2023; Kang et al. 2025) and to define and compare specific suitability 
thresholds (Liu et al. 2016; Shabani et al. 2018). 

However, while many studies report the ease of applicability, overall robustness and high predictive 
performance of Maxent compared to other presence-only approaches (Ray et al. 2017; Elith et al. 
2020; Valavi et al. 2021; Ahmadi et al. 2023), there are several aspects that need carful consideration 
throughout the modelling process. Addressing potential sampling-bias due to uneven sampling 
effort, background sampling, multicollinearity among predictor variables and appropriate model 
tuning have been reported to be crucial aspects to consider when modelling (Merow et al. 2013; 
Lissovsky and Dudov 2021), as well as the choice and quality of predictor variables  (Bradie and Leung 
2016). 

The resulting output of a Maxent analysis includes a spatial map depicting the potential distribution 
of a species and quantifying the corresponding habitat suitability through a continuous gradient from 
0 to 1, with 0 indicating least suitable habitats and areas closest to 1 the most suitable. Additionally, 
Maxent generates graphical representations depicting individual environmental variables responses 
regarding species occurrence and quantifies the relative contribution of each predictor variable to 
model performance and explanatory power. When adequately implemented and interpreted, Maxent 
modelling can provide valuable ecological insights into a species-environment relationship and 
practical utility for wildlife management and conservation planning. 
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1.3. Research Goal and Hypotheses 

The main objective of this master’s thesis is to develop a Maxent based species distribution model to 
predict and describe suitable habitats for the Hazel Grouse (Tetrastes bonasia) across the Austrian 
province of Salzburg, using signs of occurrence obtained from the Naturpark-Weißbach and the 
Bavarian Saalforsten. 

Hypotheses 

H1) Vertical Heterogeneity 

Since Hazel Grouse require a multi-layered forest stands of mixed age classes, I hypothesised that 
habitat suitability increases with increasing vertical heterogeneity. In this work, heterogeneity is 
represented as the Gini coefficient of tree-height distributions, calculated in a 150 m moving window. 

H2) Edge Proximity 

Hazel Grouse have been reported to show preference towards edge structures within forests such as 
forest aisles, waterbodies and others as these structures increase structural heterogeneity of 
habitats and provide additional food sources of corresponding edge vegetation. I hypothesised that 
habitat suitability increases with increasing proximity to a) forest roads, b) lotic-waterbodies and c) 
forest edges, measured as the Euclidean distance to the nearest edge-structures. 

H3) Transferability – Training extent 

Since Hazel Grouse occurrences were obtained exclusively from parts of the Saalachtal region which 
covers about 4.2 % of Salzburg’s total area, two modelling strategies have been compared: 

1. “Saalachtal-extent” Model: training the model on the area where data has been collected 
followed by projecting the fitted model onto all of Salzburg. 

2. “Full-extent” Model: training the model directly on the total area of Salzburg. 

I hypothesised that the local extent and projection approach will outperform the full-extent model 
when evaluated by model selection criteria as the projection feature allows for the model to be 
trained within the actual sampled area, thereby avoiding the influence of unsampled areas. 
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2. Methodology 

2.1. Study Areas – Salzburg and the Saalachtal 

Full Extent – Salzburg 

The province of Salzburg covers an area of 7154 km2 in west-central Austria, bordering Bavaria in the 
north and west, and the provinces of Upper Austria, Styria, Carinthia and Tyrol to the northeast, east, 
south and southwest, respectively. Geographically, approximately 90 % of Salzburg state territory 
lies within the Alps, extending both into the Central Eastern Alps, primarily the Hohe Tauern range in 
the south, and the Northern Limestone Alps in the north central region. These alpine areas are 
separated by the Salzach and Enns river valley, which present corridors of lower elevations and 
smoother relief, allowing for agricultural land use and the development of urban areas. Salzburg is 
traditionally partitioned into five distinct regions: Flachgau, Tennengau, Pongau, Pinzgau and 
Lungau. The Flachgau and Tennengau, encompass the northernmost extent of Salzburg, surrounding 
the city of Salzburg and the city of Hallein. The regions of Pinzgau, Pongau and Lungau, collectively 
known as the “Innergebirg-Regions”, are located in the west, south and east respectively, containing 
the highest elevations within Salzburg, particularly within the Hohe Tauern mountain ranges. 

Forests constitute the largest land cover type of Salzburg, comprising approximately 52 % of the total 
area, equating to 3750 km2. Of these, 67 % are coniferous forests, dominated by Spruce, European 
beech, Larch and others. More than half of these forests are considered “Schutzwald“, essential for 
mitigating natural hazards such as avalanches, mudslides and erosion of terrain. The distribution of 
forested areas varies across the region with the “Innergebirgs” -regions Pinzgau (110,909 ha), Pongau 
(96,157 ha) and Lungau (50,438 ha) making up the majority of forested areas over Flachgau (38,443 
ha) and Tennengau (38,443 ha) (Lackner 2023). Agricultural land occupies around 14 % (1000 km2) of 
Salzburg’s area and is largely concentrated within the valley floors of lower elevation in the northern 
regions. Traditional land use in the form of alpine pasture farming is occurring only in higher elevation 
regions. Urban Development is consisting around 4 % of the land area and is mostly concentrated 
around larger urban areas such as Zell am See, St. Johann and Hallein, in addition to large suburban 
areas around the capital city of Salzburg. 

Small Extent – Saalachtal 

The study area where hazel grouse presence has been recorded, lies within sections of the Salzburger 
Saalachtal valley, located in the Pinzgau region of Salzburg. The Saalachtal valley is characterised by 
a mosaic of landscapes ranging from valley floors at approximately 600 m a.s.l to high peaks 
exceeding 2500 m a.s.l. It encompasses several municipalities, comprising of Lofer, St. Martin bei 
Lofer, Unken and Weißbach bei Lofer, collectively encompassing 297 km2

, of which 193 km2 are 
forested and considered to be available habitat to the hazel grouse. The valley is flanked by 
pronounced mountain groups such as the Reiter Alpe in the north, the Loferer massifs to the west, 
and the Steinernes Meer plateau to the east, creating a diverse topographic alpine relief. 

Within the Saalachtal valley lies the Naturpark Weißbach, established in 2007 and covering about 
27.8 km2 of which, 21 km2 are forested. The nature park is located between the Loferer, Leoganger 
and Reiter Steinberge limestone massifs, adjacent to the Bavarian border and bordered on its 
Austrian side by the Northern Kalkhochalpen protected area and on the Bavarian side by the 
Berchtesgaden National Park and Biosphere Reserve. The majority of non-urban or agricultural areas 
within the Saalachtal, including most forested areas within the Naturpark Weißbach are owned and 
managed by the Bavarian State Forests Administration of Germany, comprising a total area of 185 
km2, of which 60 % (approximately 112 km2) are forested areas. The forests within the Saalachtal 
valley at lower and middle elevations are predominantly mixed deciduous-coniferous stands 
consisting of Norway spruce (Picea abies), European beech (Fagus sylvatica), Silver fir (Abies alba) 
and various shrubs species like hazel (Corylus avellana) and alder (Sambucus sp.). Higher elevations 
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transition into subalpine coniferous forests characterised by European larch, Spruce and large areas 
of dwarf pine (Pinus mugo) near the timberline. The Saalforsten span from approximately 540 m a.s.l 
in the valley, up to 2643 m a.s.l at the Birkhorn peak and are characterised by steep slopes, rugged 
cliffs and variable altitudinal gradients. 

2.2. Presence Records and Bias File 

Occurrences of the hazel grouse (Figure 1) have been obtained from forest district managers of the 
Bavarian Saalforsten, who have been recording presence evidence of the grouse within their 
respective forest districts. These records were not collected through a systematic survey but rather 
originate from opportunistic form of evidence, which were georeferenced and archived with potential 
future habitat analyses, such as this study, in mind. The questionnaire was distributed in March of 
2023 to the forest district managers of the Saalforsten and peers managing the Bavarian Saalforsten, 
which was completed by April 2023. 

 
Figure 1: Map depicting the administrative boundaries of Salzburg, parts of the Saalachtal and the Naturpark 
Weißbach as well as occurrence records of the hazel grouse. Basemap sources: Esri, TomTom, Garmin, FAO, 
NOAA, USGS, © OpenStreetMap contributors and the GIS User Community. 

In this questionnaire the date, longitudinal and latitudinal coordinates, the number and sex of 
individuals was asked (male, female, unknown), the type of evidence of presence (direct observation, 
acoustic-identification, photo/video, carcasses, faeces, feathers, tracks, nests, or “other”), as well 
as some information on the participants professional background (forestry, hunters, local expert, 
governmental or scientific personnel), with the option to leave additional comments or habitat 
descriptions relevant to the observation. In addition, the perceived georeferenced accuracy was 
asked (low, medium, high). The survey resulted in 44 unique responses of evidence of presence 
overall, including one entry noted as an error by a participant. Of the remaining 43 responses, 7 were 
located within the boundaries of the Naturpark-Weißbach and the others within a 17 km radius to the 
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west and south of the park all lying within the Saalachtal. 14 observations were dated and obtained 
between October 2020 and October 2022, whereas 21 were undated, 8 have been classified 
“historic” referring to observations made 10 to 30 years ago. Excluding historic records, the overall 
presence records are 35 comprising 21 unsexed individuals, 8 males, 6 females, of which 4 were 
carrying 4-6 chick (totalling 19 chicks). Thirteen observations originated from direct sightings, 1 
found-dead individual documented on a camera trap and 21 from unclassified evidence-types. Self 
reported accuracy of the participants was high in 5 cases, moderate in 22 and low in 8 cases. 

Sampling bias was addressed through a spatial thinning procedure using the ‘spThin’-package 
(Aiello‐Lammens et al. 2015), by applying a minimum distance of 500 meters between observations, 
thereby reducing spatial clustering and overrepresentation of frequently detected locations. The 
threshold was chosen, based on the hazel grouses observed mean daily migration distance, reducing 
the number of available presence records for modelling to n=34. 

Subsequently, a bias file was generated, following the recommendations of (Inman et al. 2021), by 
calculating a gaussian kernel density estimation with a bandwidth of 300m. The kernel density 
estimation way calculated on the thinned presence records with the “density()” function using the 
‘terra’ package (Hijmans et al. 2022), producing a continuous sampling density surface. This raster 
was then normalised to a range of 0-1 using “calc()”-function of the ‘raster’-package and masked to 
forested areas using the “terra::mask()” function, following the background-point selection 
approach described in chapter 2.4. 

2.3. Data Collection and Software 

The remote-sensing datasets obtained to create variables representing the habitat requirements of 
the hazel grouse are listed in (Table 1). The monthly mean precipitation and temperature data for the 
months of April, May, and June were obtained from GeoSphere Austria Bundesanstalt für Geologie, 
Geophysik, Klimatologie und Meteorologie (Hiebl and Frei 2016). Topographic datasets consisted of 
elevation, slope, and aspect, derived from the 5 m ALS-DGM, were provided by the Land Salzburg 
(data.salzburg.gv.at) in ESRI ASCII Grid format. Ecological datasets included a tree species map 
(Baumartenkarte) with 26 classes, provided in GeoTIFF format at 10 m resolution by the 
Bundesforschungszentrum für Wald (Schadauer et al. 2024), based on Sentinel-2 data alongside a 
canopy-closure layer, a normalized digital surface model (nDSM), and a binary forest mask, all in 1 m 
resolution GeoTIFF format. Vector data representing forest roads and lotic waterbodies and 
municipal boundaries of Salzburg, were obtained from Land Salzburg (data.salzburg.gv.at). The 
anonymised survey of hazel grouse occurrences in hunting territories of Austria was provided by the 
director of the hunting association of Salzburg, to be used for validating the results of habitat 
suitability mapping.
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Table 1: Topographic, ecologic and climatic datasets used in this study, including resolution, unit, format and sources. 

Data-Type Data-set 
Period/Temporal 

Extent 
Spatial 
Extent 

Resolution Data Unit Format Source 

Topographic 
Digital Terrain 

Model 
May, 2024 Salzburg 5 m Meters a.s.l. GeoTIFF Land Salzburg – data.salzburg.gv.at 

Topographic Slope   5 m Percent (0-90) GeoTIFF Land Salzburg – data.salzburg.gv.at 

Topographic Aspect   5 m Degree (0-365) GeoTIFF Land Salzburg – data.salzburg.gv.at 

Ecological 
Tree-Species-

Map 
November, 2024 Austria 10 m Classes GeoTIFF Bundesforschungszentrum für Wald 

Ecological 

Normalised 
Digital 

Surface 
Model (nDSM) 

August, 2024 Salzburg 1x1 m Meters a.s.l. GeoTIFF Bundesforschungszentrum für Wald 

Ecological 
Canopy-
Closure 

  1x1 m 
Percentage (0-

100) 
GeoTIFF Bundesforschungszentrum für Wald 

 Forest-Roads NA  NA Line Vector Land Salzburg – data.salzburg.gv.at 

Ecological 
Lotic 

Waterbodies   NA    

Climatic 
Mean 

Temperature 
April-June 2024  1000 x 1000 m C°/day GeoJSON 

GeoSphere Austria – Bundesanstalt 
für Geologie, Geophysik, 

Klimatologie und Meteorologie 

Climatic 
Mean 

Precipitation 
  1000 x 1000 m mm/day  

GeoSphere Austria – Bundesanstalt 
für Geologie, Geophysik, 

Klimatologie und Meteorologie 
Processing Forest-Mask June 2024  10 x 10 m Binary GeoTIFF Bundesforschungszentrum für Wald 

Processing 
Salzburg 

Municipal 
Boundaries 

NA  NA Polygon Vector Land Salzburg – data.salzburg.gv.at 
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All aspects regarding data-preparation and variable calculations and descriptive analyses have been 
performed using R Statistical Software v.4.4.1 (R_Core_Team 2024). All visual inspection during the 
data-preparation, variable-calculation and modelling process of R and Maxent output, as well as 
visual depictions including the creation of maps was conducted in ArcGIS Pro version 3.5. 

2.4. Data Pre-Processing and Background Selection 

Data Pre-Processing 

For environmental layers to be compatible with Maxent, they must share the same spatial extent, 
spatial resolution and coordinate reference system. Due to most of the original datasets having been 
provided in high-resolution, a resolution of 10x10m has been decided for analyses, allowing for fine-
grain analyses of potential hazel grouse habitats. The coordinate reference system chosen for this 
study was ETRS89/Austria Lambert (EPSG:3416), as it employs a Lambert Conformal Conic 
projection, specifically designed for Austria, reducing spatial distortion and ensuring high positional 
accuracy suitable for small scale geospatial analyses (Ihde et al. 2000). Additionally, most Austrian 
remote sensing data are provided in ETRS89 based projections, facilitating model integration and 
minimising potential transformation errors. 

Spatial alignment was performed using the “Municipal_Boundaries”-shapefile as a reference mask, 
ensuring consistency across spatial extent and verifying alignment in with functions provided by the 
R package ‘terra’, specifically the “project()”, “resample()”, “crop()” and “mask()” functions. This first 
spatial mask standardised all layers to the ETRS89/Austria Lambert CRS at the resolution of 10x10-
meter, restricting data processing to the state areas of Salzburg. In order to create the spatial mask 
for the smaller Saalachtal valley modelling extent, municipalities containing occurrence records 
were manually selected from the same “Salzburg_Municipal_Boundaries”-shapefile in ArcGIS and 
exported as binary raster mask. 

Background Point Selection 

Previous studies noted the importance of appropriately defining the spatial extent of available 
habitats to the target species, which is represented as the “background” in species distribution 
models (Acevedo et al. 2012; Northrup et al. 2021) to avoid over estimating the potential distribution 
when fitting a model. With regards to Maxent, (Merow et al. 2013) emphasised that the background 
selection fundamentally influences Maxent inferential abilities and must be conducted with the 
species ecology in mind. It has been recommended by (Phillips 2008; Vanderwal et al. 2009; Castillo 
and Higa 2025), that restricting background-point-selection to areas in area which the target species 
can potentially occur and exclude non-habitats in order to avoid losing detailed habitat boundaries, 
an approach demonstrated to improve model accuracy and overall performance in a comparative 
study (Castillo and Higa 2025). The background-point selection strategy for modelling in this study 
involved restricting all calculations of model variables and the modelling process to forested areas 
only, as the hazel grouse does not realistically occupy landcover types such as agricultural areas, 
urban areas or large scale open lands. To do this, the forest-cover map, was used as a spatial mask 
using the "terra::mask()" function, constraining all valid cells within each dataset exclusively to 
forested areas of Salzburg. To create the spatial mask for the smaller modelling extent, the same 
process of restricting valid cells to forested areas was applied to the smaller Saalachtal extent. 
However, the actual restriction of environmental predictor layers to forested areas, is applied after 
variable calculation in the following chapter, ensuring that calculations were performed exclusively 
on valid cells and avoiding interpolation due to the inclusion of missing or invalid data after masking, 
especially during moving-window calculations. 
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2.5. Variable Calculation 

Topographic variables: The data set of the “Aspect” predictor variable, originally provided in degrees 
from 0-360° representing the compass direction of slope orientation, was classified into eight 
categorical directional classes to simplify interpretation and facilitate practical interpretability. The 
reclassification was based standard directional groupings: North: 0-22.5°, Northeast: 22.5-67.5°, 
East: 67.5-112.5°, Southeast: 112.5-157.5°, South: 157.5°-202.5°, Southwest: 202.5-247.5°, West: 
247.5-337.5°, Northwest: 292.5-337.5°, North: 337-360°. This has been done using the “classify()”-
function from the “terra”-package”, resulting in classification of values representing cardinal 
directions from 1-8 as a categorical variable of “Aspect”. For the variables “Elevation” and “Slope”, 
no additional calculations were necessary. 

Climatic variables: To represent climatic conditions during the core breeding period of the hazel 
grouse, monthly climate data for precipitation and temperature were merged for the months of April, 
May and June respectively. The averaging of the three months was performed using the “app()” 
function from the terra package, calculating the mean value across April, May, June aka. the spring 
period, from the “terra”-package. The resulting variables were a single raster layer for temperature in 
C° and for precipitation in mm. Both layers were subsequently renamed “Seasonal_Temperature” 
and “Seasonal_Precipitation” as model variables. 

Ecological variables: To quantify vertical forest heterogeneity of tree heights, the Gini coefficient 
was calculated based on nDSM raster layer, using a moving window approach. The Gini coefficient is 
a statistical measure, originally intended to assess income inequality (Catalano et al. 2009), that is 
expressed on a normalised scale from 0 representing perfect equality to 1 maximum inequality. In 
previous studies the Gini-coefficient has been calculated from forest related data such as diameter 
of breast height or tree-height, derived by LIDAR data, to measure structural heterogeneity (Kukunda 
et al. 2019; Paluch 2021; Valbuena et al. 2021). Particularly the Gini-coefficient of tree heights has 
been shown to be an effective parametrisation measuring forest heterogeneity (Reich et al. 2022). 
The Gini-coefficient has been derived from the dataset using the moving window approach with a 
spatial diameter of 300m, representing the average daily movement of hazel grouse. The Gini 
coefficient was calculated using the “Gini()”-function from the “ineq” package (Zeileis et al. 2009). 
The moving window calculations were applied to each cell using a 150 meter focal window (15x15 
cells at 10 m resolution) using the “focal()” function from the “terra”-package. The resulting predictor 
variable was names “Gini-tree-height”. In order to create the predictor variable “Standard-deviation-
canopy-closure” representing the variability in forest canopy structure, the standard deviation of 
canopy closure was calculated, using the same moving window approach. The input raster 
represented canopy closure as continuous percentage values, from which the standard deviation in 
a moving window was calculated following the same approach and parameters as performed in the 
Gini-coefficient calculations. 

The original tree-species-dataset representing tree-species composition, has been provided as a 
categorical raster layer with 26 distinct tree species and tree species assemblages, which was 
reclassified into five ecologically meaningful forest type categories to improve interpretability and to 
reduce model complexity. The five resulting categories were: 1) Single-Species Conifers, 2) Mixed-
Species Conifers, 3) Coniferous-Deciduous mixed, 4) Single-Species-Deciduous and 5) 
Undergrowth. The reclassification was performed using the “classify()” function from the “terra”-
package and resulted in the variable “Tree-species-composition”. 

To quantify the spatial proximity of edge structures relevant to hazel grouse habitat use, three 
distance based raster layers were calculated representing the Euclidean distance to forest-edges, 
lotic-waterbodies and forest-roads, respectively. All calculations were performed in R using the 
‘terra’ and ‘sf’ package (Pebesma 2018). Vector layers representing the before mentioned habitat-
features were rasterised onto a reference grid encompassing the same dimensions as the other 
raster layer, assigning values to cells intersecting the cell-grid. By applying the “distance”-function 
from the terra package, the Euclidean distance was calculated for each cell. This resulted in three 
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distance raster layers, “Distance_forest-edge”, “Distance_lotic-waterbodies” and “Distance_forest-
roads”. 

2.6. Multicollinearity Diagnostics and Description of 
Environmental Predictors 

To assess multicollinearity among candidate environmental predictors used for modelling, a 
Pearsons product-moment correlation was conducted to identify pairwise correlation between 
numeric and ordinal variables, and the Variance Inflation Factors (VIF), were calculated to identify 
higher order collinearity. The correlation analysis was performed by calculating a heterogeneous 
correlations matrix using the “hetcor()” function from the R package ‘polycor’, with a threshold of r ≥ 
0.7 to identify correlation among predictors (Fox and Fox 2022). The correlation analysis (Appendix A 
1) revealed a high negative correlation (r = -0.85) between “Seasonal_Temperature” and “Elevation”, 
leading to the exclusion of “Seasonal_Temperature” due to redundancy and data quality concerns of 
the climate data, while “Elevation” was retained as a candidate predictor variable. Additionally, 
despite the variable “Seasonal_Precipitation”, showing no statistically significant correlations with 
other predictors, it was excluded from further analysis due to data quality concerns and to reduce 
model complexity by limiting the number of potential predictors. To further investigate potential 
higher order collinearity issues, the VIF scores for all the variables were calculated using the 
“vifstep()” function from the ‘usdm’ R package developed by (Naimi and Naimi 2017), applying a 
threshold of 5, with variables showing VIF values ≥3 intended for iterative removal. During the VIF 
assessment, no further variables were excluded from the set of candidate predictors, thereby only 
retaining uncorrelated candidate predictor variables. In addition to collinearity diagnostics, 
descriptive statistics were calculated to provide an overview of the predictor variables prior to 
modelling. This was carried out for the full modelling extent as well as the small modelling extent to 
document potential differences in predictor characteristics between spatial extents. For continuous 
predictors (Table 2), the mean, standard deviation (SD) and interquartile range (IQR) were calculated 
and for categorical predictors (Table 3), the proportional representation (%) of each class. 

Table 2: Descriptive statistics (mean, standard deviation and interquartile range) of continuous environmental 
predictors for both study extents (small extent – Saalachtal, full extent – Salzburg IQR describes the range 
between the 25th and 75th percentile, capturing the central spread of the data. 

Variable (Small Extent) Unit Mean ± SD IQR 
Distance_lotic_waterbodies meter 578.33 ± 447 580.853 
Distance_forest_roads meter 1913.535 ± 1343 2010.51 
Distance_forest_edge meter 81.668 ± 104.386 115.55 
Elevation meter a.s.l. 1147.461 ± 293.697 437.068 
Standard-deviation-canopy-closure Index (0-1) 0.155 ± 0.075 0.102 
Gini-tree-height Index (0-1) 0.252 ± 0.099 0.138 
Variable (Full Extent) Unit Mean ± SD IQR 
Distance_lotic_waterbodies meter 381.755 ± 369.054 391.438 
Distance_forest_roads meter 998.807 ± 1150.370 1115.198 
Distance_forest_edge meter 111.762 ± 154.824 155.451 
Elevation meter a.s.l. 1269.092 ± 368.648 539.319 
Standard-deviation-canopy-closure Index (0-1) 0.177 ± 0.094 0.138 
Gini-tree-height Index (0-1) 0.266 ± 0.115 0.159 
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Table 3: Descriptive statistics (class-proportions) of categorical predictors for both study extents. 

Aspect (cardinal directions) Proportion (%) - Small Proportion (%) - Full 
1 - North 1.49 2.89 
2 - Northeast 11.95 12.66 
3 - East 15 14.56 
4 - Southeast 15.45 13.33 
5 - South 15.34 13.32 
6 - Southwest 14.76 13.54 
7 - West 13.74 15.76 
8 - Northwest 12.25 13.92 
Tree-species-composition   
1 - Single-Species-Coniferous 41.18 38.89 
2 - Mixed-Species-Coniferous 16.21 21.89 
3 - Coniferous-Deciduous mixed 26.54 17.07 
4 - Single-Species-Deciduous 11.58 13.83 
5 - Undergrowth 4.49 8.31 

 

2.7. Model Predictor Sets 

For modelling, nine different candidate predictor sets comprising varying amounts of the eight 
derived environmental predictors were constructed (Table 4), based on ecological knowledge of the 
target species and in alignment with best practices in species distribution modelling using Maxent. 
This approach aimed at balancing ecological relevance, interpretability and methodological 
robustness in order to minimise risks associated with model overfitting. The methodological 
approach aligns with principles outlines in the work of (Leitão and Santos 2019) who emphasized 
iteratively assessing the importance of predictor variable selection to ensure accurate predictions 
while allowing for practical ecological interpretation of model results and (Warren et al. 2014), 
suggesting that fewer predictors tend to produce more robust models while avoiding overfitting. 
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Table 4: Candidate predictor sets, including core predictor variables and respective predictor combinations used for modelling. 

Candidate Set    
Topographic 

Variable 
Vertical 

heterogeneity 
Distance-Variables   

Set-1 Aspect 
Tree-species-
composition 

Gini-tree-
height 

Elevation   Distance_forest_road Distance_lotic_waterbodies 

Set-2 Aspect Tree-species-
composition 

Gini-tree-
height 

Elevation     

Set-3 Aspect 
Tree-species-
composition 

Gini-tree-
height 

 
Standard-

deviation-canopy-
closure 

 Distance_forest_road Distance_lotic_waterbodies 

Set-4 Aspect 
Tree-species-
composition 

Gini-tree-
height 

 
Standard-

deviation-canopy-
closure 

   

Set-5 Aspect 
Tree-species-
composition 

Gini-tree-
height 

  Distance_forest_edge   

Set-6 Aspect Tree-species-
composition 

Gini-tree-
height 

Elevation  Distance_forest_edge   

Set-7 Aspect 
Tree-species-
composition 

Gini-tree-
height 

 
Standard-

deviation-canopy-
closure 

 Distance_forest_road  

Set-8 Aspect 
Tree-species-
composition 

Gini-tree-
height 

 
Standard-

deviation-canopy-
closure 

Distance_forest_edge   

Set-9 Aspect 
Tree-species-
composition 

Gini-tree-
height Elevation 

Standard-
deviation-canopy-

closure 
Distance_forest_edge   
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In this work, a set of core variables across all candidate sets were selected based on ecological 
knowledge of habitat-feature importance and on initial model testing. The topographic predictor 
“Aspect”, consistently showing high predictive performance and explanatory contribution to model 
performance in preliminary test runs, was included due its potential ecological influence on 
microclimate and vegetation. The ecological variable “Tree-species-composition” was also included 
as a core predictor as it represents key habitat components such as food-sources and shelter 
reflected by fundamental tree species or tree species composition, thereby influencing habitat 
selection of the hazel grouse. In addition, the variable “Gini-tree-height”, representing vertical 
structural heterogeneity, was implemented as a core predictor due to its superior predictive 
performance over “Standard-deviation-canopy-closure” in preliminary testing and due to its 
ecological importance for hazel grouse habitats. 

In order to evaluate the contribution of additional predictor variables, the remaining ecological and 
topographic variables, as well as distance-related variables, were implemented incrementally 
across all candidate sets, to asses individual contributions to model performance and ecological and 
practical interpretability. Variables such as “Elevation” and “Standard-deviation-canopy-closure” 
were selectively incorporated to assess their ecological relevance and contribution to model 
performance. Additionally, the integration of distance-based predictors “Distance_forest_edge”, 
“Distance_forest_roads” and “Distance_lotic_waterbodies” was constrained to either one or two 
layers per set to prevent redundancy and avoid inflating model complexity. The selection and 
systematic rotation of the predictor variables across all candidate sets is intended to assess the 
predictive importances and their combined or individual roles in influencing the predictive power of 
the model. 

2.8. Model Fitting and Selection 

Model fitting was conducted using the Maxent Java Software and model calibration was conducted 
in R. To assess the effect of spatial scale and evaluate robustness across varying spatial extents, the 
entire modelling and model selection procedure was independently conducted at two spatial scales, 
yet with identical model settings and predictor sets. In the first “traditional” approach, a model is 
directly trained on the full extent of Salzburg without projection and with the inclusion of the created 
bias file. In the second modelling approach, outlined by (Phillips 2008), a model is trained on the 
environmental predictor set of the smaller “Saalachtal” extent and subsequently projected onto the 
environmental predictor set covering the full study area (Salzburg). 

All model runs employed a fixed combinations of three feature types: linear, quadratic and hinge 
which were chosen, based on the recommendations provided by (Merow et al. 2014) advocating for 
fewer and simpler feature types, given the amount of presence-records used in this work (n=34). More 
complex feature-types such as the product- and threshold-feature should be avoided from using 
below a sample size of n=80, and were not used in this work (Elith et al. 2010). In order to balance 
model complexity and predictive generalisation, three different regularisation multipliers (RM’s) were 
used: 0.5, 1 and 2. The choice of regularisation multipliers are based on recommendations provided 
by (Ahmadi et al. 2023), suggesting that regularisation multiplier values are adequate for the given 
sample size (n=34) and supported by findings from (Morales et al. 2017) indicating that lower 
regularisation parameters tend to produce more robust models with fewer sample sizes. Each model 
was run using 80 % of the occurrence records for training and 20 % for testing, with model robustness 
assessed via 20 bootstrap replicates and jackknife-test to assess variable-importance on model 
performance. This ensures that each model replication samples different subsets of the data, 
therefore accounting for potential variability in model performance due to the effect of randomly 
sampling training- and test-data. All model outputs are set to be generated using the recommended 
cloglog transformation. The model fitting process resulted in 27 candidate models for each modelling 
extent, totalling in 54 unique models overall. 
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Model Selection 

After model fitting, model selection was performed separately for each modelling extent using a 
systematic sequential approach following the “ORTEST” framework described by (Dorji et al. 2020). 
For each extent, the 27 candidate models were first evaluated using 10th percentile training presence 
omission rate as the primary criterion. This threshold was chosen because it balances sensitivity to 
presence records with predictive generalisability and is particularly suitable for small sample sizes. 
In the first step, the models with the lowest omission rates were retained. If multiple models shared 
the lowest omission rates, the AUC for test data (AUC_test) was used as a secondary criterion, with 
higher values indicating better discriminatory ability. As an additional indicator of overfitting, the 
difference between training and test AUC (AUC_Diff) was examined, with smaller values indicating 
greater generalisability. Based on this ranking, the two best performing models of each spatial extent 
were selected, resulting in a total of four candidate models for further consideration. 

The final model was chosen in two rounds. In the first round, four candidate models were evaluated 
and compared based on model performance metrics, predictor set and environmental predictor 
response curves, as well as ecological plausibility through visual inspection in ArcGIS and in 
consultation with my supervisors. After this evaluation, the four candidate models were reduced to 
two, from which one was selected as the preliminary final model. In the second round, both 
remaining candidate models were presented to the director and head-forester to discuss and 
interpret the models’ output with regards to ecological realism and habitat prediction of the model, 
particularly focusing on the areas of the Naturpark-Weißbach and the surrounding Saalforsten. 

2.9. Post-Modelling Processing and Validation of Suitability Map 

Post-Processing 

The final continuous cloglog raster layer from Maxent was converted into a binary map of “suitable” 
and “unsuitable” habitats, using the “10th-percentile training presence threshold (10PT). This 
threshold defines the suitability-cutoff under which 10 % of training occurrences fall, thereby only 
including the 90 % of presence records with a suitability score above the lowest 10 %. Among the 
multiple potential thresholds available to binarize a continuous Maxent output, the 10PT is one of the 
most widely used thresholds (Rhoden et al. ; Liu et al. 2016; Shabani et al. 2018) in Maxent modelling. 
Additionally, findings from (Radosavljevic and Anderson 2013) suggest that, among other candidate 
thresholds, the 10PT is less sensitive to extreme low suitability scores and more conservative 
compared to other threshold options. 

To describe the environmental differences between areas classified as “suitable” and “unsuitable”, 
descriptive statistics were calculated for all model predictors. For continuous predictors the mean, 
standard deviation and interquartile range were calculated. For categorical predictors the 
proportional representation (%) of each class as well as Joint Count Statistics (JCS) were calculated, 
to quantify the clustering of identical categorical values “like-values” and different categorical values 
“unlike-values” among neighbouring cells. This allows for the calculation of “like-ratios” which 
provide a measure of spatial clustering of categorical classes with like-ratios close to 1 indicating 
clustering of the same class and like-ratios close to 0 more spatially dispersed classes. Additionally, 
the difference in like-ratios between suitable and unsuitable areas (like-ratio difference) was 
calculated to better describe differences in the degree of spatial clustering of individual classes 
between “suitable” and “unsuitable” areas, with positive values indicating stronger clustering in 
“suitable” and negative in “unsuitable areas”. 

Validation 

To validate the resulting binary threshold, Maxent’s built in post-hoc binomial-test was used to 
assess whether the number of independent test records falling into “suitable” areas are statistically 
significantly higher than random chance, in contrast to the proportion of the landscape defined as 
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“suitable”. A significant p-value < 0.05 indicates that the model predicts test localities in suitable 
areas better than random chance. Both the continuous and binary suitability maps were qualitatively 
evaluated, together with the director of the hunting association of Salzburg, by comparing its 
predictions against a survey conducted in 2023 by the Salzburger hunting association (Figure 2), 
assessing presence of hazel grouse in hunting territories . In this evaluation process, five large, 
continuous, high-suitability areas, one from each of the five regions of Salzburg were identified, which 
were present in both the continuous and binary map, to be selected for external validation. In this 
external validation approach, the respective hunting- or forest-district managers of these areas were 
directly contacted, assessing/confirming the presence and perceived habitat suitability for the hazel 
grouse in that forest territory. 

 

Figure 2: Anonymised map of the 2023 survey of the Salzburger hunting association assessing hazel grouse 
occurrences across Salzburg with yellow areas experiencing one occurrence, light-green two occurrences and 
dark-green three occurrences. 
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3. Results 

3.1. Model Selection 

Model selection was carried out by the ORTEST approach to balance performance against model 
complexity across different predictor sets and regularisation multipliers, for both spatial modelling 
extents (Table 5). For the Saalachtal extent the top ranked model (ID_Model_1) resulted in a training 
AUC of 0.8345, a test AUC of 0.7831, a 10 % omission rate of 0.0714 and an AUC difference of 0.0514. 
It was closely followed by Model 10 and Model 19. Model 2 showed the highest test discrimination 
(test AUC = 0.0.8636) and lowest AUC_difference (0.051) but at as higher omission rate of 6.9 %, while 
Model 2 (Set-2, RM = 2) ranked fifth with comparable metrics. In contrast, for the full-extent of 
Salzburg, Model 10 (Predictor Set 1; RM = 1), scored the highest rank within its spatial extent and 
overall across all models with best discriminatory ability (AUC_train = 0.9081, AUC_test = 0.8297), 
low overfitting (AUC_Diff = 0.0784) and a low omission rate (6 %), outperforming all other models 
across both spatial extents. On the basis of this trade-off between predictive accuracy and model 
balance, Model 10 of the full-extent was selected as the final model for habitat suitability mapping. 

Table 5: Top 5 ranked Maxent models for both study extents (small extent – Saalachtal, full extent – Salzburg ) 
under the ORTEST selection framework. Models were ranked by the 10th percentile training presence threshold, 
ties were broken by AUC_test and the AUC_diff and subsequently compared for both study extents. 

Extent Model- 
ID Rank_ORTEST ß-

Multiplier 
Predictor-

Set 
AUC_ 
train 

AUC. 
test 

Omission-
rate (10%) AUCdiff 

Salzburg 
(full) 10 1 1 Set-1 0.9081 0.8297 0.0643 0.0784 

Salzburg 
(full) 12 2 1 Set-3 0.8915 0.826 0.0678 0.0655 

Salzburg 
(full) 6 3 0.5 Set-6 0.8872 0.8202 0.0678 0.067 

Salzburg 
(full) 22 4 2 Set-4 0.8663 0.8103 0.0607 0.056 

Salzburg 
(full) 14 5 1 Set-5 0.8952 0.8047 0.0714 0.0905 

Saalachtal 
(small) 1 1 1 Set-1 0.8345 0.7831 0.0714 0.0514 

Saalachtal 
(small) 10 2 0.5 Set-9 0.8579 0.7764 0.0643 0.815 

Saalachtal 
(small) 19 3 2 Set-7 0.8436 0.659 0.0678 0.1209 

Saalachtal 
(small) 11 4 2 Set-2 0.8417 0.7727 0.0714 0.0514 

Saalachtal 
(small) 2 5 0.5 Set-7 0.8636 0.7534 0.0678 0.069 
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3.2. Final Maxent Model 

The final Maxent model was built on 34 presence records and 10028 background points, converging 
after a mean of 391 iterations. The model shows strong discriminatory power with a regularised 
training gain of 0.556, a mean test gain of 0.746, and a mean training AUC of 0.908 and a mean test 
AUC of 0.830 ± 0.072. Variable contribution (Table 6) showed the variables “Aspect” to be the largest 
contributor (29.61 %), followed by ”Distance_forest_roads” (18.72 %),”tree-species category” (16.11 
%), “Gini-tree-height” (14.67 %), “Elevation” (9.96 %) and “Distance_lotic_waterbodies” (10.92 %). 
Additionally, permutation importance highlighted “Distance_forest_roads” (38.83 %) and 
“Elevation” (22.24 %) as the most influential environmental predictors. 

Table 6: Model predictor variables and respective variable contribution (%) and permutation importance (%). 

Variable Model Contribution (%) Permutation Importance (%) 
Aspect 29.6 9.7 

Distance_forest_roads 18.7 38.7 
Tree-Species 16.1 7.3 

Gini-tree-height 14.7 15.8 
Distance_lotic_waterbodies 10.9 6.1 

Elevation 10 22.2 
 

The Jackknife tests of the regularised training gain from the model (Figure 3) resulted in an overall 
model gain of 0.5565 including all variables. The variable “Aspect” alone resulted in the highest 
explanatory power when used in isolation, whereas the variable “Distance_lotic_waterbodies” 
contributed the least. In contrast, the omission of “Aspect” from the full-extent model caused the 
largest drop in training gain, while removing “Elevation” produced the smallest decrease. The 
remaining predictors “Tree-species-composition”, “Distance_forest_roads” and “Gini-tree-height” 
each experienced intermediate solo gains and omission effects. 

 
Figure 3: Bar chart of the jackknife analysis for each model predictor depicting the relative influence on model 
performance with- and without omission – blue bars depict the single standalone contribution to the model, the 
turquoise bars represent model contribution with omission of the respective variable and the red bar depicts 
overall model performance including all variables. 

Analysis of the model response-curves revealed the influence of each predictor on habitat suitability. 
“Distance_lotic_waterbodies” (Figure 4) showed that suitability is relatively high with close proximity 
peaking at approximately 100m, then declining steadily, falling below ≈ 0,5 beyond 1900m. 
“Elevation” (Appendix B 1) showed a unimodal response, with suitability increasing from peaking 
between 1100-1400, before declining with increasing altitude. “Gini-tree-height” (Figure 5) showed 
highest suitability at low vertical heterogeneity, followed by a steady decline with increasing vertical 
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heterogeneity. The response-curve of “Distance_forest_roads” (Figure 6) showed that suitability is 
lowest in close proximity to forest roads which sharply rises with increasing distance before 
plateauing around a maximum suitability. “Tree-species composition” (Appendix B 2) showed that 
category 5 “undergrowth” results in the highest mean suitability, followed by category 2 “Mixed-
Species-Conifers”, category 3 “Coniferous-Deciduous-Mixed”, category 1 “Single-Species-
Conifers” and lowest mean suitability in category 4 “Single-Species-Deciduous”. The response of the 
variable “Aspect” (Appendix B 3) revealed that north-eastern slopes (category 2) are most suitable, 
with north (category 1) and northwest (category 8) being also favoured, while east (category 3) and 
west facing slopes (category 7) experience intermediate suitability and south-eastern (category 4) 
and southern aspects (category 5) showed lowest suitability. 

 
Figure 4: Maxent response curve of "Distance_lotic_waterbodies" in isolated runs. On the x-axis, the value of 
the predictor (m) is depicted and on the y-axis the habitat suitability on a cloglog scale (0 to 1) is depicted. The 
red curve depicts the average suitability value and the blue areas indicate 1 standard deviation from the mean. 

 
Figure 5: Maxent response curve of "Gini-tree-height" in isolated runs. On the x-axis, the value of the predictor ( 
Index = 0 to 1) is depicted and on the y-axis the habitat suitability on a cloglog scale (0 to 1) is depicted. The red 
curve depicts the average suitability value and the blue areas indicate 1 standard deviation from the mean. 



 

 21 

 
Figure 6: Maxent response curve of "Distance_forest_road" in isolated runs. On the x-axis, the value of the 
predictor (m) is depicted and on the y-axis the habitat suitability on a cloglog scale (0 to 1) is depicted. The red 
curve depicts the average suitability value and the blue areas indicate 1 standard deviation from the mean. 

3.3. Habitat Suitability Mapping 

The continuous Maxent cloglog habitat suitability map (Figure 7), confined to forest landcover, 
encompasses approximately 3750 km2 of Salzburg. The predicted suitability values range from 0.002 
to 0.997 and are depicted in a continuous colour spectrum with blue-shades indicating very low 
suitability and red coloured areas very high suitability. Spatially, the highest suitability zones 
concentrate in the densely forested southern districts of Pinzgau, Pongau and Lungau. By contrast, 
the northern region of Flachgau, including the surroundings of the capital city of Salzburg show very 
few forested areas which comprise of low suitability apart from forests in the very south of the region. 
The Tennengau region exhibits moderate to high suitability, primarily along its eastern border to 
Upper Austria. 
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Figure 7: Habitat suitability map depicting continuous cloglog suitability-scores in a colour gradient. Red 
shades represent high suitability values, yellow intermediate and blue shades low habitat suitability scores. 
Basemap sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors and the GIS User 
Community. 

The procedure of binarizing the continuous cloglog output at the 10 % training-presence threshold 
(cloglog = 0,428), resulted in 25.5 % (≈ 665 km2) of the study area after exclusion of non-forested areas 
being classified as “suitable” for the hazel grouse. Below this cutoff, the model shows a training 
omission rate of 7 % and a test omission rate of 21.7 %, and a post-hoc binomial test showed that 
the model predicts true presences in areas defined as “suitable” above the before mentioned 
threshold, statistically significantly more often than random chance (p = 0.045). 
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Figure 8: Binarized habitat suitability map depicting predicted "suitable" and "unsuitable" habitats across 
Salzburg based on the 10th-percentile training presence threshold (cloglog = 0,428). Basemap sources: Esri, 
TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors and the GIS User Community. 

The difference in environmental predictor expressions is compared for areas predicted as “suitable” 
and “unsuitable” for the hazel grouse. For continuous predictors (Table 7), suitable areas were 
characterised by a mean distance to lotic waterbodies of 316.6 m ± 285.9 m, which is on average 83.7 
m closer than in unsuitable areas (400.3 m ± 386.2 m). The mean distance to forest roads in suitable 
areas was 1769.9 m ± 1538,3 m, more than twice the average distance observed in unsuitable areas 
(808.9 m ± 946.6 m). Elevation showed almost identical averages between suitable and unsuitable 
areas of ≈ 1200 m. Tree height heterogeneity, expressed as the Gini-coefficient, was lower in suitable 
areas (0.21 ± 0.089) than in unsuitable areas (0.28 ± 0.12), indicating less vertical heterogeneity in 
suitable areas. 

Table 7: Descriptive statistics (mean, standard deviation and interquartile range) for continuous predictors of 
predicted "suitable" and "unsuitable" areas. IQR describes the range between the 25th and 75th percentile, 
capturing the central spread of the data. 

Variables (Suitable Areas) Unit Mean ± SD IQR 
Distance_lotic_waterbodies meter 316.637 ± 285.868 290.352 
Distance_forest_roads meter 1769.877 ± 1538.274 1721.947 
Elevation  meter a.s.l. 1271.904 ± 312.950 406.017 
Gini-tree-height Index 0-1 0.21 ± 0.089 0.114 
Variables (Unsuitable Areas)    
Distance_lotic_waterbodies meter 400.335 ± 391.900 420.424 
Distance_forest_roads meter 808.94 ± 946.628 902.044 
Elevation meter a.s.l. 1270.087 ± 386.174 590.325 
Gini-tree-heights Index 0-1 0.281 ± 0.117 0.16 
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For categorical predictors (Table 8), “Aspect” and “Tree-species-composition” distribution differed 
between suitability classes, with the like ratio difference (LRD) indicating the degree and direction of 
relative spatial clustering across the two suitability classes. For “Aspect”, the highest positive LRD 
and thereby indicating ting spatial clustering in suitable areas, was found for northeast facing slopes 
(LRD = 0.117; 26,5 % in suitable and 9 % in unsuitable), followed by southwest (0.027; 18 % vs. 12 %) 
northwest (0.027; 20.9 % vs. 12 %) and north (0.026; 4.6 % vs. 2.4 %). Smaller positive values were 
found in for west (0,019; 9% vs. 17,5 %), south (0.016; 4,5 % vs 15.8 %) and east (0.011; 7 % vs. 16.7 
%). The only negative LRD was for southeast facing slopes (-0.260; 9.5 % vs. 14.5 %). For “Tree-
species-composition“ the strongest positive LRD occurred for coniferous-deciduous mixed stands 
(0.294; 16.5 % in suitable vs. 17.2 % in unsuitable), followed by single species deciduous stands 
(0.139; 6.2 % vs. 15.7 %), undergrowth (0.088; 7 % vs. 8.7 %) and mixed species coniferous stands 
(0.148; 33.9 % vs. 19 %). Single species conifers had the only negative LRD (-0.161; 36.4 % vs. 39.5 
%). 

Table 8: Descriptive statistics - proportions (%) and Joint Count Statistics (JCS) like-ratio's for categorical 
variables of predicted "suitable" and "unsuitable" areas. Like ratios quantify the clustering of identical 
neighbouring classes (1 = strong clustering; 0 = dispersed). The like ratio difference (LRD) is the like-ratio in 
suitable minus unsuitable areas, indicating where clustering is stronger. 

Aspect (cardinal 
directions) 

Proportion (%) 
- Suitable 

Like ratio - 
Suitable 

Proportion (%) 
- Unsuitable 

Like ratio - 
Unsuitable 

Like Ratio 
Difference 

1 - North 4.6 0.339 2.4 0.313 0.026 
2 - Northeast 26.5 0.213 9 0.096 0.117 
3 - East 7 0.359 16.7 0.348 0.011 
4 - Southeast 9.5 0.393 14.5 0.653 -0.26 
5 - South 4.5 0.338 15.8 0.322 0.016 
6 - Southwest 18 0.306 12 0.279 0.027 
7 - West 9 0.299 17.5 0.28 0.019 
8 - Northwest 20.9 0.357 12 0.33 0.027 
Tree-species-
composition      

1 - Single-Species-
Coniferous 36.4 0.451 39.5 0.612 -0.161 

2 - Mixed-Species-
Coniferous 33.9 0.582 19 0.434 0.148 

3 - Coniferous-
Deciduous mixed 16.5 0.732 17.2 0.438 0.294 

4 - Single-Species-
Deciduous 6.2 0.516 15.7 0.377 0.139 

5 - Undergrowth 7 0.281 8.7 0.193 0.088 
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3.4. Model Validation 

Both continuous cloglog habitat suitability map as well as the binary suitability map were first 
evaluated by qualitatively comparing it to the anonymised survey-map provided by experts of the 
Salzburger hunting association. Despite the intentional distortion of hunting-territory boundaries, by 
visual inspection, regions of high predicted suitability largely corresponded with the survey results. 

Five core areas were selected, one in each of the five regions of Salzburg. These areas were 
“Gaisberg” in Flachgau, “Blühnbachtal” in Tennengau, “Stubach” in Pinzgau, “Kleinarl” in Pongau 
and “Tamsweg” in the Lungau region. Each area was remotely validated for hazel grouse presence 
and for perceived habitat suitability (Figure 9). 

The hunting district managers of Blühnbachtal, Stubach, Kleinarl and the forest district manager of 
Tamsweg confirmed continuous hazel grouse occurrences and reported high perceived habitat 
suitability within their territories. The validation of the Gaisberg location failed, with the forest district 
manager reporting no current hazel grouse occurrences. However, it has been reported, that the 
available habitats appear to be suitable for the hazel grouse. 

 
Figure 9: Binarized suitability map depicting suitable and unsuitable habitats in Salzburg with validated 
locations marked in green circles. Basemap sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © 
OpenStreetMap contributors and the GIS User Community.  
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4. Discussion 

4.1. Summary of Key Findings 

In this study, a Maxent based species distribution model was created to identify suitable habitats for 
the hazel grouse and evaluate habitat suitability across the province of Salzburg. The final, full-extent 
model demonstrated strong predictive performance (mean training AUC = 0.908; test AUC = 0,830; 
omission rate = 7 %), outperforming all alternative candidate models for both spatial extents. 
Suitability of habitats was most strongly influenced by the slope aspect, was well as by the increasing 
distance to forest roads and the presence of mixed coniferous stands. Unexpectedly, increased 
vertical heterogeneity of forest structure, measured as the Gini-coefficient of tree heights, was 
associated with reduced habitat suitability. Approximately 25 % (= 665 km2) of Salzburg’s forested 
area was identified as suitable habitat for the hazel grouse, with larger continuous patches occurring 
primarily in the inner mountain valleys and more fragmented suitable areas found in the north of 
Salzburg. Suitable habitats were characterised by a higher proportion of mixed coniferous forest 
stands and reduced proportions of single-species deciduous forest stands, greater distance to forest 
roads, closer proximity to lotic waterbodies and a notable predominance of northern facing slopes. 
In addition, suitable habitats are characterised by more spatially self associated or “continuous” 
forest stand types and slope aspect/orientation as described by the joint count statistics. 
Unexpectedly, and contrary to hypothesis 3, the full extent model outperformed the small extent 
projection model. These findings of this study partially support the initial hypothesis regarding the 
influence of edge-related variables but contradicted expectations regarding the influence of 
structural heterogeneity. 

4.2. Model Performance and Relationship between Environmental 
Predictors on Habitat Suitability 

The final model was built on the full-extent, outperforming all other candidate models from both sets 
of the small extent and the full-extent. The chosen model scores the highest mean traing AUC (0.908) 
and test AUC (0.830 ± 0.072), indicating strong discriminatory abilities. The model showed modest 
overfitting (AUC_diff = 0.078) and a low 10 percent omission rate (6 %), outperforming the best small 
extent model. In addition to evaluating model performance diagnostics, a qualitative visual 
comparison of the best small extent projection model with my supervisors and associates of the 
Naturpark Weißbach respectively suggested the full-extent model to be the better fitting. This led to 
the rejection of the third hypothesis of spatial transferability, namely that the small extent model 
following a projection outperforms the full-extent model based on the used model selection 
approach. While there is currently no review study comparing Maxent projection model performance, 
findings from Sutton and Martin (2022) comparing projected vs. non-projected models suggest that 
non-projected models perform better under certain conditions. In addition, Merow et al. (2014) 
suggested that creating a robust and valid projection model requires specific model tuning which 
was not the case in this study, as the projection feature was mainly used for comparative model 
selection. 

In the following section, the environmental predictors are discussed, based on the results of the 
jackknife-test as well as response-curves depicting the relationship between a variable and its 
influence on habitat suitability. 

Topographic Variables 

The jackknife analysis revealed the importance of slope orientation, with the variable “Aspect” alone 
yielded the highest gain when used in isolation and its omission caused the greatest drop in overall 
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model performance. The responses of “Aspect” revealed a clear north/south gradient. According to 
model results, northern slopes are most suitable while western aspects are providing intermediate 
suitability and southern slopes area least suitable. This suggest that hazel grouse may prefer cooler 
and more moist northern facing slopes in Salzburg. It has been reported in a quantitative synthesis 
by Bradie and Leung (2016) who analysed multiple variables used in Maxent models, that high-quality 
datasets, such as digital terrain models derived by remote sensing data, contribute most to model 
performance. Apart from ecological effects, this can explain the strong observed influence of the 
variable “Aspect” in this model. However, the jackknife test showed that the variable “Elevation” 
which is based on a dataset of equal quality and origin, contributed second to last to overall model 
performance which is in contrast to these findings. However, it has been reported by Smith and 
Santos (2020) that Maxent is able to correctly discriminate between true and false influences of 
environmental predictor, particularly when data quality and the resolution of environmental layers is 
high, and assigning correct variable importance. This suggests that the strong influence of “Aspect” 
in this study, may reflect actual ecological factors, rather than modelling artifacts. 

Additionally, while the variable “Elevation” contributed the least to overall model performance, in 
preliminary testing and comparisons of candidate predictor sets, elevation appeared to have a 
subjectively important perceived effect of influencing the model prediction of forest-composition in 
high altitude areas. For example, visual inspections of models with and without revealed that 
incorporating “elevation” into the model allows for correctly identifying high-altitude forests i.e 
“Krummholzzone” as unsuitable habitats for the hazel grouse. However, since not all permutations 
of potential predictors sets were tested, it is not possible to confidently attribute the proposed 
discrimination ability by incorporating “Elevation” into the model. 

Structural Variables 

Results of the Maxent analysis and visual inspection of the response-curves suggest that suitability 
of Hazel Grouse habitats declines with increasing vertical heterogeneity (=Gini Coefficient) with the 
highest predicted suitability being expressed in low Gini indices (0,1 – 0,2) and dropping off as 
structural complexity increased. This relationship directly contradicts the first hypotheses, which 
proposes that greater vertical heterogeneity would increase habitat suitability and is therefore 
rejected. However, while this led to rejecting the first hypothesis (H1), this is in accordance with 
findings from Sitzia et al. (2014) who analysed stand structure and composition in 30x30m cells 
derived from a field survey, suggesting that hazel grouse prefer more homogeneous stands with no 
more than one layer, but with a rich and diverse understory. While the regular Gini-coefficient is to be 
interpreted where 0 represent perfect homogeneity and 1 represent perfect heterogeneity, research 
from Valbuena et al. (2021) suggest that Gini-coefficients calculated for one-dimensional forest 
variables such as “tree-heights”, as in this study, maximum realistic vertical heterogeneity is 
expressed at a Gini-coefficent of 0.33. As the results of the Maxent response curve of “Gini-tree-
heights” (Figure 5) suggest that hazel grouse prefer lower vertical heterogeneity further qualitative 
analysis is needed to directly link a Gini-coefficient to vertical heterogeneity in Austrian forests. 
Additionally, the moving window size (150 m), which was originally chosen based on the mean daily 
movement range of hazel grouse, may be too large to capture fine scale variation in forest-structure 
due to the increased smoothing effect of the moving window calculation. It has been suggested by 
Paluch (2021) that appropriate moving window sizes are around 15 m for capturing variation in forest 
structure. In the light of this, the numerical results regarding the Gini-coefficient of tree heights 
reported in this study must be interpreted with caution as they may be not meaningful due to the 
misconstruction of the moving window. 

The variable “Tree-species-composition” emerged as a predictor of medium importance on overall 
model performance. The classes within show similarly strong influence on habitat suitability with the 
category “Undergrowth” emerging as the class depicting the highest mean suitability with “single-
species deciduous” experiencing the least. While the difference is only marginal across classes, 
“undergrowth” emerging as the most suitable class is supported by findings of Sitzia et al. (2014) who 
found that ground layer composition to be one of the most important habitat factors positively 
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influencing suitability. Conversely, “single-species deciduous” emerging as the least suitable class 
is reasonable, as montane forests containing large proportions of coniferous tree species are the 
primary forest habitats in Europe. It must be noted that the authors of the original dataset Schadauer 
et al. (2024) report a potential underrepresentation of mixed tree-species classes in the dataset, as 
two tree-species contribute to a single cell of the original size of 10x10 m, thereby posing difficulties 
to the classification algorithm. This was not addressed in the modelling process of this study, which 
may result in overrepresentation of single-species classes and underrepresentation of mixed-
species classes. 

Edge-Distance-Based Variables 

The second hypothesis proposed that habitat suitability increases with proximity to egde structures 
such as waterbodies and forest roads. The results of this study led to accepting the hypothesis 
regarding “Distance_lotic_waterbodies” but rejecting it for “Distance_forest_roads”. The response 
curves (Figure 6) depicting “Distance_lotic_waterbodies” (H2a) experience the expected effect 
where suitability is peaking) at around 100-500 m from streams, which remain relatively high up to 
1000 meters and then declining with increasing distance. However, while the relationship appears 
relative clear in the response of habitat suitability values, the jackknife-test revealed that the variable 
“Distance_lotic_waterbodies” contributes the least to overall model performance. In contrast, the 
response curves for “Distance_forest_roads” (Figure 6) is inverted, depicting lowest suitability within 
500m of forest roads and only rising from a distance of 2000m upwards, led to rejecting the second 
hypotheses (H2b). The jackknife test revealed that the variable “Distance_forest_roads” contributed 
modestly to model performance, similar to “Gini-tree-heights” and “Tree-species-composition”. 

The effect and influence of forest roads and other linear structure such as hiking trails on hazel grouse 
appears to be highly variable and often revealing contradicting impact depending on the context of 
the study. Several studies (Müller et al. 2012; Matysek et al. 2019; Scridel et al. 2022) attribute 
presence or close proximity of edge structures like forest roads a positive effect on habitat quality by 
increasing diversification of vegetation assemblages and variability in canopy-closures regimes. 
Additionally, findings from Matysek et al. (2022) suggest that hazel grouse brood and chick survival is 
increased within a 100m radius of forest roads. However, the same or similar structures as forest 
roads, such as hiking trails are not only a potential source of disturbance but can also increase 
predation risk for ground-dwelling birds by facilitating access for predators such as foxes, martens 
and corvids(Kämmerle and Storch 2019; Matysek et al. 2020; Klaus and Ludwig 2021). Notably, 
findings from Sachot et al. (2003) did not find any statistically significant influence of forest roads 
presence within a 1 km2 radius on hazel grouse occurrence, attributing it to the cryptic avoidance 
behaviour of the hazel grouse. This suggests, that the effect and impact of structures such as forest 
roads and hiking trails may be highly variable, depending on locality and context. Based on this, the 
effect captured by implementing the variable “Distance_forest_roads” in this study appears to have 
identified forest roads as a source of disturbance rather than a feature of structural enrichment in 
hazel grouse habitats. 
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4.3. Characteristics and Spatial Patterns of Suitable Habitats 
across Salzburg 

The binary classification of the Maxent cloglog output at the 10th-percentile training presence 
threshold, representing the threshold under which the lowest 10 % of suitability scores of presence 
records, reveals spatial distinction between “suitable” and “unsuitable” habitats for the hazel grouse 
across Salzburg. The post-hoc binomial test (p = 0.045) confirmed that hazel grouse presences occur 
statistically significantly more often in areas defined as “suitable” by the aforementioned threshold 
than expected by random chance. Suitable areas comprise approximately 25.5 % (=665 km2), of the 
overall potential habitat of the hazel grouse across Salzburg. Similar estimations on the amount of 
suitable habitats are reported in a long term study from a finish island (Saari et al. 1998), investigating 
the habitat selection of the hazel grouse based on quantitative and qualitative patch metrics, who 
estimated the amount of suitable habitat to be 32 % across all landcover types. 

Based on visual inspection, a large amount of non-continuous forest patches as well as isolated 
pixels of high-suitability cells is present across Salzburg, particularly in the northern region. However, 
large and continuous forest patches predicted as potentially suitable for the hazel grouse were 
present, particularly in secluded valleys of the regions of Pinzgau, Pongau and Lungau. These 
predictions are largely in accordance with the survey of the hunting association of Salzburg (Figure 
2). In the south-west Pinzgau region of Salzburg, areas predicted as “suitable” occur to a large degree 
in the valleys south of the Salzach river, particularly in the secluded lower valleys of the Hohe Tauern 
mountain range. Among the subgroups of the Hohe Tauern range, suitable habitats are predicted to 
occur in the east and west valleys of the “Granatspitzgruppe” and “Venedigergruppe” with the valleys 
of the adjacent “Glocknergruppe” providing fewer suitable areas. In the central-south Pongau region 
large continuous areas of predicted suitability were identified around the “Radstädter Tauern” near 
the city of Sankt Johann and the “Ankogelgruppe” to the east of the city of Bad Gastein, as well as in 
the very southern valleys of the “Goldberggruppe”. The easternmost Lungau regions is orographically 
separated by the Niedere Tauern from the rest of Salzburg. Predicted suitable areas are largely 
occring in the east of the region bordering Styria. In particular south of the city of Tamsweg, within the 
“Schladminger Tauern” and the northern extensions of the Hafnergruppe in the south bordering the 
state of Carinthia provide suitable habitats for the hazel grouse. In the north-central Flachgau region 
of Salzburg, large areas of predicted suitability were identified in the Osterhorngruppe and parts of 
the Salzkammergut. In the central Region of Salzburg, large continuous areas of high predicted 
suitability are located in the Blühnbachtal valley which is flanked by the Hochkönigstock mountain 
range in the south and the Hagengebirge of the Berchtesgadener Apen to the north, in addition to 
being separated in the east by the Salzach river. 

Characteristics of Suitable Habitats 

Tree-species-composition (Table 8) in predicted “suitable” areas are dominated by mixed-species 
coniferous stands compared to unsuitable areas, with similarly high proportions of single species 
coniferous stands of in suitable and unsuitable areas. The proportion of single species deciduous 
stands are reduced in “unsuitable” compared to “suitable” areas with similar proportions of 
undergrowth for both suitability classes. The proportions of coniferous and deciduous mixed stands 
is similar in for both suitable and unsuitable areas. The like ratio difference (LRD) derived from the 
Joint Count Statistics indicates how strongly and in which suitability class, the respective classes of 
categorical variables tend to be more spatially aggregated or clustered. For “Tree-species-
composition”, the largest positive LRD values was observed for coniferous-deciduous mixed species 
suggesting that these stands tend to occur in more spatially continuous amounts compared to 
unsuitable patches. Mixed species coniferous stands also showed a positive LRD similar to single-
species deciduous. In contrast, the largest negative LRD values is exhibited for single-species 
coniferous stands  indicating a greater clustering in unsuitable areas. Undergrowth showed a smaller 
positive LRD. These proportion patterns are largely consistent with previous findings from Klaus and 
Ludwig (2021) in the bohemian forests reporting that habitat suitability increases from 10 % 
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deciduous tree species proportion with an optimum between 30 to 40 % and a maximum of 85 % 
coniferous amount and Mathys et al. (2006) who found that an amount of 35 % deciduous species 
together with 45 % coniferous species and shrubs comprise suitable hazel grouse habitats and Åberg 
et al. (2003) who reported similar proportions of deciduous species between 5-40 %. 

The variable “Aspect” (Table 8) is prominently different in suitable and unsuitable areas. 
Proportionally, north eastern and north-western aspects were more common in suitable areas, while 
east, south, and west were less common. LRD’s indicate stronger spatial clustering in suitable areas 
for northeast , southwest  and north , while west , south  and east showed smaller positive LRD 
values. The only negative LRD occurred for southeast, indicating greater clustering in unsuitable 
areas. While there is no clear preference reported of hazel grouse towards aspect direction, some 
studies report tendencies towards southern exposures (Steiner 2007; Matysek et al. 2019). The clear 
prominence and clustering of northern aspects in suitable areas may reflect cooler and shaded 
areas, allowing for the establishment of a dense understory and larger amounts of mixed forests, 
which are favoured by the hazel grouse (Kortmann 2022). 

For continuous environmental variables (Table 7), the distances to lotic waterbodies were on average 
closer and with fewer variations in distances, in suitable areas than in unsuitable areas. These results 
are in accordance with previous findings from (Matysek et al. 2019) who found that occupied sites 
hat a statistically higher occurrence of streams available within a 300m radius than non-occurrence 
sites. The average distance to forest roads was much greater in suitable areas than in unsuitable 
areas. This indicates, as mentioned in the previous chapter, that suitable habitats tend to be more 
remote and potentially less affected by anthropogenic disturbances and silvicultural practices. Tree 
height heterogeneity, expressed as the Gini-coefficient of tree heights, was lower in suitable areas 
than in unsuitable areas indicating a more even vertical forest structure in suitable habitats, whereas 
unsuitable habitats tend to exhibit greater vertical heterogeneity. However, as mentioned in the 
previous chapter, the interpretation of the Gini-cofficient has presented itself as a challenge to be 
interpreted, due to the moving window size calculations. The average altitude of both suitable and 
unsuitable habitats in the model is largely the same around 1270 m a.s.l., with similar variation 
across suitability classes. This pattern reflects the broad ecological plasticity of the hazel grouse, 
which is known to occur across a wide altitudinal gradient from lower mixed forests, up to avalanche 
paths near the treeline(Kunz et al. 2021). However, despite this flexibility with regard to elevation, the 
hazel grouse consistently depends on small scale habitat structures such as forest edges as well as 
certain tree species, which may occur only locally or temporarily. 

4.4. Limitations and Improvements 

In this study, limitations must be considered when interpreting the outcomes. The number of 
occurrence records of the hazel grouse in this study, while sufficient enough for robust modelling, 
were largely clustered within a discrete region of Salzburg. Although, best-practice efforts were made 
to address uneven sampling effort by mitigating spatial sampling bias, incorporating additional 
occurrence records will most likely result in a more robust and precise model. Furthermore, the 
computational resources imposed constraints, especially regarding the intensive memory and 
processing requirements associated with handling large geospatial datasets, particularly with a given 
cell size of 10m. These limitations restricted certain analyses such as calculating density-based 
metrics instead to Euclidean distance metrics. Another aspect that needs to be addressed is the 
exclusion of climatic and seasonal habitat use from modelling. Although climatic variables were 
selected as candidate models and are recognised as important predictors in a Maxent analyses 
(Bradie and Leung 2016), these predictors were excluded due to multicollinearity issues and stark 
differences in spatial resolution of the datasets and due to data quality concerns. The climate data 
were available in 1000x1000 m resolution, and the subsequent resampling to the target resolution of 
10x10 m would lead to a generating smoothed values through interpolation across the study extent. 
Not only is using this climate dataset in this analysis problematic regarding the modelling process, 
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but according to the authors, climate predictions tend to be particularly prone to inaccuracies, in 
mountainous regions such as is the case in this study (Hiebl and Frei 2016). Nonetheless, previous 
research comparing seasonal habitat selection patterns of the hazel grouse indicated minor 
differences in variation of habitat use, notably a higher reliance on coniferous tree species during 
winter, as elaborated in chapter 1.2. Factors such as predation and human disturbance were not 
explicitly accounted for in this study. Efforts were made to incorporate human disturbance into the 
study design by implementing data reflecting recreational land-use (Strava), yet these data were 
unobtainable for this study. The most recent review study on the impact of predation on grouse 
species found a negative impact of predator abundance on chick and nest survival (Kämmerle and 
Storch 2019), particularly affecting hazel grouse in fragmented habitat patches, and patches in close 
proximity to agricultural areas (Saniga 2002; Huhta et al. 2017). 

Certain methodological refinements could further enhance the robustness and ecological validity of 
this research. Implementing quantitative model selection and -tuning approaches such as the R 
packages KUENM or ENMeval could improve the optimisation of predictor combinations as well as 
model parameters. These methods utilise derivatives of the Akaike Information Criterion (AIC), 
assessing model performance, which were not applied in the current study. The present study 
followed a semi-qualitative and quantitative approach, based on the recommendations by (Dorji et 
al. 2020), prioritising ecological relevance and expert evaluation. Integrating the aforementioned 
mathematically driven model-tuning methods may offer more precise parameter estimates and an 
overall more robust modelling approach. However, this was not possible in this study, due to 
computational limitations. While the background point selection performed in this study appears to 
have contributed to overall accuracy of model predictions, further improvements may be achieved 
by not only spatially restricting the background of the model, but adapt the number of background 
points in relation to the size of the study area (Rausell-Moreno et al. 2025). Regarding model 
variables, calculating distance based metrics for frequent or large-scale landscape structures such 
as wind power plants or ski-lifts and implementing these aspect as potential sources of disturbance 
in the model (Coppes et al. 2019). Further refinement could be achieved by reassessing the 
application of the Gini-coefficient of tree heights and comparing it to other continuous and non-
discrete alternatives, capable of capturing fine-scale variation in vegetation structure, while offering 
a more interpretable and practically applicable parametrisation. Lastly, since studies report variable 
effect of linear forest structures such as forest roads and hiking trails on habitat suitability, it is 
essential to address that these habitat features can either act as a source of disturbance or as 
elements of structural enrichment, thereby positively or negatively affecting hazel grouse habitats. 
Therefore, I recommend that future habitat modelling should pre-assess any potential effects of 
linear forest structure both qualitatively and quantitatively before modelling. 

4.5. Future Research and Management Implications 

Future Research 

Validation remains an important aspect for evaluating and confirming model predictions. While 
remote validation of larger, high-suitability patches in cooperation with the director of the Salzburger 
hunting association and district forest managers has contributed to initial validation, systematic field 
validation is necessary to further attribute validity to the model. Conducting systematic surveys 
across both areas predicted as “suitable” and “unsuitable” would enhance understanding of the 
model accuracy and contributing habitat features, thereby providing more reliable information for 
conservation decisions. 

Future research could further refine the present habitat suitability maps by excluding small individual 
high-suitability cells, and assessing a minimum continuous patch size necessary for harbouring 
continuous hazel grouse populations and comparing it to the findings of (Sahlsten et al. 2010; Kajtoch 
et al. 2012). Subsequently, the degree of fragmentation across these defined patches can be 
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assessed based on an approach proposed by (Rivas et al. 2022). Additionally, integrating connectivity 
metrics may offer insights in the dispersal potential of the hazel grouse, resulting in a more coherent 
and comprehensive understanding of the conditions and distribution of hazel grouse habitats 
throughout Salzburg. 

Moreover, future research and conservation efforts must extend beyond local or regional scales. 
Management and conservation efforts with the goal of sustaining viable wildlife populations, such as 
the hazel grouse, cannot be restricted to small scale local or regional units. Assessing habitat 
connectivity and suitability across administrative and national boundaries is a necessary aspect in 
order to sustain a viable and long-term hazel grouse populations within Austria and throughout the 
alpine region. These large-scale approaches can allow for the identification of potential corridors for 
the target species that support migrations processes, genetic exchange and population resilience. 

Management Implications and Recommendations 

From an applied management perspective, several implications arise from this study. For wildlife 
management, the habitat suitability map can guide targeted monitoring efforts, allowing for the 
efficient allocation of resources. Conservation and maintenance of identified high-suitability 
habitats with confirmed continuous occurrences should be prioritised to sustain existing hazel 
grouse populations. Additionally, the identification of suitable yet unoccupied habitats can inform 
efforts aimed at habitat conservation and restoration for potential colonisation of the hazel grouse. 
In order to keep the habitat model and the habitat suitability map relevant for conservation and 
management purposes over time, the model framework used in this study can be repeated at regular 
intervals. Using the same set of environmental predictors, while incorporating additional presence 
records and updated environmental data allows for the re-evaluation of habitat suitability across 
Salzburg and the detection of shifts in model outputs, driven by environmental changes or sampling 
effort. Future presence data should be collected systematically, including in currently unsampled 
but potentially suitable areas, using targeted point-checks in predicted habitats without prior 
evidence of occurrence using acoustic monitoring devices such as AudioMoth. 

Forest management strategies should emphasize the establishment and maintenance of multi-
species mixed forests, characterized by diverse stand structures and a proportion of deciduous tree 
species and shrubs between 10-15 %. Specifically, forest management should actively promote 
species beneficial to the hazel grouse such as poplar, alder, willow, birch and shrubs, particularly 
bilberry. Intensive silvicultural practices, including ground-clearing and clearcutting should be 
avoided, with selective logging practices being preferred to sustain habitat integrity. It is 
recommended to reduce forest road usage during sensitive periods, notably the breeding and chick 
rearing period from April to June. Additionally, allowing for natural succession, particularly in 
coniferous stands offer essential winter shelter and mixed stands for vital summer brooding can 
provide essential elements of high suitable habitats. In the context of tourism and landscape 
planning, directing human recreational activities away from secluded, high-suitability areas is 
recommended, particularly during critical episodes from April to June. The created habitat suitability 
maps can be integrated into ecological landscape planning, by providing a basis for assessing and 
mitigating the potential impacts of infrastructure development and increased human presence on 
hazel grouse populations. 



 

 33 

5. References 

Åberg J, Swenson J, Andrén H (2011) The dynamics of Hazel Grouse (Bonasa bonasia L.) occurrence 
in habitat fragments. Canadian Journal of Zoology 78:352-358. doi: 10.1139/z99-210 

Åberg J, Swenson JE, Angelstam P (2003) The habitat requirements of hazel grouse (Bonasa bonasia) 
in managed boreal forest and applicability of forest stand descriptions as a tool to identify 
suitable patches. Forest Ecology and Management 175:437-444. doi: 
https://doi.org/10.1016/S0378-1127(02)00144-5 

Acevedo P, Jiménez-Valverde A, Lobo JM, Real R (2012) Delimiting the geographical background in 
species distribution modelling. Journal of Biogeography 39:1383-1390. doi: 
https://doi.org/10.1111/j.1365-2699.2012.02713.x 

Ahmadi M, Hemami M-R, Kaboli M, Shabani F (2023) MaxEnt brings comparable results when the 
input data are being completed; Model parameterization of four species distribution models. 
Ecology and Evolution 13:e9827. doi: https://doi.org/10.1002/ece3.9827 

Aiello‐Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package 
for spatial thinning of species occurrence records for use in ecological niche models. 
Ecography 38:541-545 

Anselmetto N, Weisberg PJ, Garbarino M (2024) Global change in the European Alps: A century of 
post-abandonment natural reforestation at the landscape scale. Landscape and Urban 
Planning 243:104973. doi: https://doi.org/10.1016/j.landurbplan.2023.104973 

BirdLife-International (2021) European Red List of Birds - Supplementary Material IUCN 
BirdLife-International (2024) Species factsheet: Hazel Grouse Tetrastes bonasia 
Bradie J, Leung B (2016) A quantitative synthesis of the importance of variables used in MaxEnt 

species distribution models. Journal of Biogeography 44. doi: 10.1111/jbi.12894 
Braunisch V, Roder S, Coppes J, Froidevaux JSP, Arlettaz R, Bollmann K (2019) Structural complexity 

in managed and strictly protected mountain forests: Effects on the habitat suitability for 
indicator bird species. Forest Ecology and Management 448:139-149. doi: 
https://doi.org/10.1016/j.foreco.2019.06.007 

Castillo DS, Higa M (2025) Effectiveness and implications of spatial background restrictions on 
model performance and predictions: a special reference for Rattus species. Landscape and 
Ecological Engineering 21. doi: 10.1007/s11355-025-00653-w 

Catalano M, Leise T, Pfaff T (2009) Measuring Resource Inequality: The Gini Coefficient. Numeracy 2. 
doi: 10.5038/1936-4660.2.2.4 

Coppes J et al. (2019) The impact of wind energy facilities on grouse: a systematic review. Journal of 
Ornithology 161. doi: 10.1007/s10336-019-01696-1 

Diaz S et al. (2019) Pervasive human-driven decline of life on Earth points to the need for 
transformative change. Science (New York, N.Y.) 366. doi: 10.1126/science.aax3100 

Dorji T, Linke S, Sheldon F (2020) Optimal model selection for Maxent: a case of freshwater species 
distribution modelling in Bhutan, a data poor country. Authorea Preprints 

Elith J et al. (2020) Presence-only and Presence-absence Data for Comparing Species Distribution 
Modeling Methods. Biodiversity Informatics 15:69-80. doi: 10.17161/bi.v15i2.13384 

Elith J, Hastie T, Dudík M, Chee YE, Yates C (2010) A statistical explanation of MAXENT for ecologists. 
Diversity and Distributions 17:43-57. doi: 10.1111/j.1472-4642.2010.00725.x 

Elith J, Leathwick J (2009) Species Distribution Models: Ecological Explanation and Prediction Across 
Space and Time. Annual Review of Ecology, Evolution and Systematics 40:677-697. doi: 
10.1146/annurev.ecolsys.110308.120159 

Elvesveen JE, Sørensen OJ, Patten MA (2023) Forest grouse response to forestry practices across four 
decades. Forest Ecology and Management 538:121005. doi: 
https://doi.org/10.1016/j.foreco.2023.121005 

Fernández M, Hamilton H (2015) Ecological Niche Transferability Using Invasive Species as a Case 
Study. PloS one 10:e0119891. doi: 10.1371/journal.pone.0119891 

https://doi.org/10.1016/S0378-1127(02)00144-5
https://doi.org/10.1111/j.1365-2699.2012.02713.x
https://doi.org/10.1002/ece3.9827
https://doi.org/10.1016/j.landurbplan.2023.104973
https://doi.org/10.1016/j.foreco.2019.06.007
https://doi.org/10.1016/j.foreco.2023.121005


 

 34 

Fois M, Cuena Lombraña A, Giuseppe F, Bacchetta G (2018) Using species distribution models at 
local scale to guide the search of poorly known species: Review, methodological issues and 
future directions. Ecological Modelling 385:124-132. doi: 10.1016/j.ecolmodel.2018.07.018 

Fox J, Fox MJ (2022) Package ‘polycor’. R package version 3 
Fuchs R, Herold M, Verburg P, Clevers JGPW (2012) A high-resolution and harmonized model 

approach for reconstructing and analyzing historic land changes in Europe. Biogeosciences 
Discussions 9:14823-14866. doi: 10.5194/bgd-9-14823-2012 

Gingrich S, Magerl A, Matej S, Le Noë J (2022) Forest Transitions in the United States, France and 
Austria: dynamics of forest change and their socio- metabolic drivers. Journal of Land Use 
Science 17:113-133. doi: 10.1080/1747423X.2021.2018514 

Gu W, Swihart RK (2004) Absent or undetected? Effects of non-detection of species occurrence on 
wildlife–habitat models. Biological Conservation 116:195-203. doi: 
https://doi.org/10.1016/S0006-3207(03)00190-3 

Guisan A et al. (2013) Predicting species distributions for conservation decisions. Ecology letters 
16:1424-1435. doi: 10.1111/ele.12189 

Guisan A, Zimmermann N (2000) Guisan A, Zimmermann NE. Predictive habitat distribution models 
in ecology. Ecological Modeling. Ecologial Modelling 135:147-186. doi: 10.1016/S0304-
3800(00)00354-9 

Hall LS, Krausman PR, Morrison ML (1997) The Habitat Concept and a Plea for Standard Terminology. 
Wildlife Society Bulletin (1973-2006) 25:173-182 

He K et al. (2015) Will remote sensing shape the next generation of species distribution models? 
Remote Sensing in Ecology and Conservation 1. doi: 10.1002/rse2.7 

Hiebl J, Frei C (2016) Daily temperature grids for Austria since 1961—concept, creation and 
applicability. Theoretical and Applied Climatology 124:161-178. doi: 10.1007/s00704-015-
1411-4 

Hijmans RJ, Bivand R, Forner K, Ooms J, Pebesma E, Sumner MD (2022) Package ‘terra’. Maintainer: 
Vienna, Austria 384 

Hovick T, Elmore R, Dahlgren D, Fuhlendorf S, Engle D (2014) REVIEW: Evidence of negative effects 
of anthropogenic structures on wildlife: a review of grouse survival and behaviour. Journal of 
Applied Ecology 51. doi: 10.1111/1365-2664.12331 

Huhta E, Helle P, Nivala V, Nikula A (2017) The effect of human-modified landscape structure on 
forest grouse broods in two landscape types. Ecosphere 8:e01950. doi: 10.1002/ecs2.1950 

Ihde J, Weber G, Habrich H, Söhne W (2000) European Geodetic Status–European Geodetic 
Reference Systems.  

Inman R, Franklin J, Esque T, Nussear K (2021) Comparing sample bias correction methods for 
species distribution modeling using virtual species. Ecosphere 12. doi: 10.1002/ecs2.3422 

Jäger H, Schirpke U, Tappeiner U (2020) Assessing conflicts between winter recreational activities 
and grouse species. Journal of Environmental Management 276:111194. doi: 
https://doi.org/10.1016/j.jenvman.2020.111194 

Jimenez J et al. (2022) The Cantabrian capercaillie: A population on the edge. Science of The Total 
Environment 821:153523. doi: 10.1016/j.scitotenv.2022.153523 

Kajtoch Ł, Żmihorski M, Bonczar Z (2012) Hazel Grouse occurrence in fragmented forests: habitat 
quantity and configuration is more important than quality. European Journal of Forest 
Research 131:1783-1795. doi: 10.1007/s10342-012-0632-7 

Kämmerle J-L, Storch I (2019) Predation, predator control and grouse populations: a review. Wildlife 
Biology 2019. doi: 10.2981/wlb.00464 

Kang Y et al. (2025) Projected distribution patterns of Alpinia officinarum in China under future 
climate scenarios: insights from optimized Maxent and Biomod2 models. Frontiers in Plant 
Science 16. doi: 10.3389/fpls.2025.1517060 

Karuppaiah V et al. (2023) Predicting the potential geographical distribution of onion thrips, Thrips 
tabaci in India based on climate change projections using MaxEnt. Scientific Reports 
13:7934. doi: 10.1038/s41598-023-35012-y 

https://doi.org/10.1016/S0006-3207(03)00190-3
https://doi.org/10.1016/j.jenvman.2020.111194


 

 35 

Klaus S, Ludwig T (2021) Long-Term Trends of Hazel Grouse (Tetrastes bonasia) in the Bohemian 
Forest (Šumava), Czech Republic, 1972-2019 

Kortmann M (2022) Biodiversität entlang von Höhengradienten der Bayerischen Alpen Auswirkungen 
des Klimawandels auf Diversität und Struktur von Gebirgswäldern im Bayerischen 
Alpenraum. Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten 

Kortmann M et al. (2018) Forest structure following natural disturbances and early succession 
provides habitat for two avian flagship species, capercaillie (Tetrao urogallus) and hazel 
grouse (Tetrastes bonasia). Biological Conservation 226:81-91. doi: 
https://doi.org/10.1016/j.biocon.2018.07.014 

Kukunda C, Beckschäfer P, Magdon P, Schall P, Wirth C, Kleinn C (2019) Scale-guided mapping of 
forest stand structural heterogeneity from airborne LiDAR. Ecological Indicators 102:410-
425. doi: 10.1016/j.ecolind.2019.02.056 

Kunz F, Immitzer M, Grünschachner-Berger V, Zohmann-Neuberger MH, Markus Nopp-Mayr, Ursula 
(2021) Modellierung des Lebensraumpotenzials des Haselhuhns (Bonasa bonasia) in der 
Steiermark. Bericht an die Steirische Landesregierung, Landesforstdirektion 

Kunz F et al. (2022) Assessment of drivers of spatial genetic variation of a ground-dwelling bird 
species and its implications for conservation. Ecology and Evolution 12:e8460. doi: 
https://doi.org/10.1002/ece3.8460 

Lackner (2023) Österreichischer Waldbericht 2023. In: Gesamtkoordination: Sektion III - 
Forstwirtschaft und Nachhaltigkeit BfL-uF, Regionen und Wasserwirtschaft (ed). 
Bundesministerium für Land- und Forstwirtschaft, Regionen und Wasserwirtschaft, 

Stubenring 1, 1010 Wien 
Lawler J, Wiersma Y, Huettmann F (2011) Using Species Distribution Models for Conservation 

Planning and Ecological Forecasting. pp 271-290 
Leitão P, Santos M (2019) Improving Models of Species Ecological Niches: A Remote Sensing 

Overview. Frontiers in Ecology and Evolution 7:9. doi: 10.3389/fevo.2019.00009 
Lissovsky A, Dudov S (2021) Species-Distribution Modeling: Advantages and Limitations of Its 

Application. 2. MaxEnt. Biology Bulletin Reviews 11:265-275. doi: 
10.1134/S2079086421030087 

Liu C, Newell G, White M (2016) On the selection of thresholds for predicting species occurrence with 
presence-only data. Ecology and Evolution 6:337-348. doi: 
https://doi.org/10.1002/ece3.1878 

Ludwig T, Klaus S (2016) Habitat selection in the post-breeding period by Hazel Grouse Tetrastes 
bonasia in the Bohemian Forest. Journal of Ornithology 158:101-112. doi: 10.1007/s10336-
016-1365-z 

MacKenzie DI (2005) WHAT ARE THE ISSUES WITH Presence-Absence DATA FOR WILDLIFE 
MANAGERS? The Journal of Wildlife Management 69:849-860. doi: 
https://doi.org/10.2193/0022-541X(2005)069[0849:WATIWP]2.0.CO;2 

Mathys L, Zimmermann N, Zbinden N, Suter W (2006) Identifying habitat suitability for hazel grouse 
Bonasa bonasia at the landscape scale. Wildlife Biology 12:357-366. doi: 10.2981/0909-
6396(2006)12[357:ihsfhg]2.0.co;2 

Matysek M, Gwiazda R, Bonczar Z (2017) Seasonal changes of the Hazel Grouse Tetrastes bonasia 
habitat requirements in managed mountain forests (Western Carpathians). Journal of 
Ornithology 159:1-13. doi: 10.1007/s10336-017-1484-1 

Matysek M et al. (2022) What habitat parameters are important for the survival of ground nests in 
mountain forests? Recommendations for protection of Hazel Grouse Tetrastes bonasia 
based on an experiment with artificial nests. Bird Study. doi: 
10.1080/00063657.2022.2026875 

Matysek M, Gwiazda R, Zięba F, Klimecki M, Mateja R, Krzan P (2020) High tourism activity alters the 
spatial distribution of Hazel Grouse (Tetrastes bonasia) and predation on artificial nests in a 
high-mountain habitat. Ornis Fennica 97:53-63. doi: 10.51812/of.133966 

https://doi.org/10.1016/j.biocon.2018.07.014
https://doi.org/10.1002/ece3.8460
https://doi.org/10.1002/ece3.1878
https://doi.org/10.2193/0022-541X(2005)069%5b0849:WATIWP%5d2.0.CO;2


 

 36 

Matysek M, Kajtoch Ł, Gwiazda R, Binkiewicz B, Szewczyk G (2019) Could gaps and diverse 
topography compensate for habitat deficiency by the forest-dwelling bird Hazel Grouse ( 
Tetrastes bonasia )? Avian Biology Research 12:175815591983219. doi: 
10.1177/1758155919832190 

Merow C et al. (2014) What do we gain from simplicity versus complexity in species distribution 
models? Ecography 37. doi: 10.1111/ecog.00845 

Merow C, Smith MJ, Silander Jr JA (2013) A practical guide to MaxEnt for modeling species' 
distributions: what it does, and why inputs and settings matter. Ecography 36:1058-1069. doi: 
https://doi.org/10.1111/j.1600-0587.2013.07872.x 

Morales N, Fernández I, Baca-González V (2017) MaxEnt’s parameter configuration and small 
samples: are we paying attention to recommendations? A systematic review. PeerJ 5: e3093 

Müller D, Schröder B, Müller J (2012) Modelling habitat selection of the cryptic Hazel Grouse Bonasa 
bonasia in a montane forest. Journal of Ornithology 150:717-732. doi: 10.1007/s10336-009-
0390-6 

Naimi B, Naimi MB (2017) Package ‘usdm’. Uncertainty analysis for species distribution models. R-
Cran 18:1-19 

Norberg A et al. (2019) A comprehensive evaluation of predictive performance of 33 species 
distribution models at species and community levels. Ecological Monographs 89. doi: 
10.1002/ecm.1370 

Northrup J et al. (2021) Conceptual and methodological advances in habitat‐selection modeling: 
guidelines for ecology and evolution. Ecological Applications 32:e02470. doi: 
10.1002/eap.2470 

Paluch J (2021) On the Consequences of Using Moving Window Segmentation to Analyze the 
Structural Stand Heterogeneity and Debatable Patchiness of Old-Growth Temperate Forests. 
Forests 12:96. doi: 10.3390/f12010096 

Pardini R, Nichols L, Püttker T (2017) Biodiversity Response to Habitat Loss and Fragmentation. pp 
229-239 

Pebesma E (2018) Simple features for R: standardized support for spatial vector data.  
Phillips S (2008) Transferability, sample selection bias and background data in presence-only 

modelling: A response to Peterson et al. (2007). Ecography 31:272-278. doi: 10.1111/j.0906-
7590.2008.5378.x 

Phillips S, Dudík M (2008) Modeling of species distributions with MAXENT: new extensions and a 
comprehensive evaluation. Ecography 31:161-175. doi: 10.1111/j.0906-7590.2008.5203.x 

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME (2017) Opening the black box: an open-
source release of Maxent. Ecography 40:887-893. doi: https://doi.org/10.1111/ecog.03049 

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic 
distributions. Ecological Modelling 190:231-259. doi: 
https://doi.org/10.1016/j.ecolmodel.2005.03.026 

Pommerening A, Widman U, Szmyt J (2025) The origin and beginnings of modern Continuous Cover 
Forestry in Europe. Forest Ecosystems 14:100348. doi: 
https://doi.org/10.1016/j.fecs.2025.100348 

R_Core_Team (2024) R: A Language and Environment for Statistical Computing, 4.4.1 edn. R 
Foundation for Statistical Computing 

Radomski T, Beamer D, Babineau A, Wilson C, Pechmann J, Kozak K (2022) Finding what you don’t 
know: Testing SDM methods for poorly known species. Diversity and Distributions 28:n/a-n/a. 
doi: 10.1111/ddi.13536 

Radosavljevic A, Anderson R (2013) Making better MAXENT models of species distributions: 
complexity, overfitting and evaluation. Journal of Biogeography 41. doi: 10.1111/jbi.12227 

Ram D, Axelsson A-L, Green M, Smith H, Lindström Å (2017) What drives current population trends in 
forest birds – forest quantity, quality or climate? A large-scale analysis from northern Europe. 
Forest Ecology and Management 385:177-188. doi: 10.1016/j.foreco.2016.11.013 

https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1111/ecog.03049
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1016/j.fecs.2025.100348


 

 37 

Rausell-Moreno A, Galiana N, Naimi B, Araújo MB (2025) Improving species distribution models by 
optimising background points: Impacts on current and future climate projections. Ecological 
Modelling 507:111177. doi: https://doi.org/10.1016/j.ecolmodel.2025.111177 

Ray D, Behera M, Jacob J (2017) Evaluating ecological niche models: A comparison between Maxent 
and GARP predicting distribution of Hevea brasiliensis. Proceedings of the National Academy 
of Science India 88. doi: 10.1007/s40011-017-0869-5 

Reich K, Kunz M, Bitter A, Von Oheimb G (2022) Do different indices of forest structural heterogeneity 
yield consistent results? iForest - Biogeosciences and Forestry 15:424-432. doi: 
10.3832/ifor4096-015 

Reimoser SR, F. (2024) Haselhuhn spärlich, aber noch weitverbreitet Der Anblick vol. 10, pp 24-27 
Rhoden CM, Peterman WE, Taylor CA Maxent-directed field surveys identify new populations of 

narrowly endemic habitat specialists.  
Rivas CA, Guerrero-Casado J, Navarro-Cerrillo RM (2022) A New Combined Index to Assess the 

Fragmentation Status of a Forest Patch Based on Its Size, Shape Complexity, and Isolation 
Diversity, vol. 14 

Rózsa J, Strand T, Montadert M, Kozma R, Höglund J (2016) Effects of a range expansion on adaptive 
and neutral genetic diversity in dispersal limited Hazel grouse (Bonasa bonasia) in the French 
Alps. Conservation Genetics 17. doi: 10.1007/s10592-015-0792-3 

Rutkowski R, Jagołkowska P, Zawadzka D, Bogdanowicz W (2016) Impacts of forest fragmentation 
and post-glacial colonization on the distribution of genetic diversity in the Polish population 
of the hazel grouse Terastes bonasia. European Journal of Wildlife Research 62. doi: 
10.1007/s10344-016-1002-4 

Saari L, Åberg J, Swenson JE (1998) Factors Influencing the Dynamics of Occurrence of the Hazel 
Grouse in a Fine-Grained Managed Landscape. Conservation Biology 12:586-592 

Sachot S, Perrin N, Neet C (2003) Winter habitat selection by two sympatric forest grouse in western 
Switzerland: Implications for conservation. Biological Conservation - BIOL CONSERV 
112:373-382. doi: 10.1016/S0006-3207(02)00334-8 

Sachser F, Nopp-Mayr U, Zohmann M, Schweiger A, Grünschachner-Berger V, Immitzer M (2017) 
Searching the right tie—Expert-based vs. statistical niche modeling for habitat management 
at the alpine treeline ecotone. Ecological Engineering 100:107-119. doi: 
10.1016/j.ecoleng.2016.12.009 

Sahlsten J, Wickström F, Höglund J (2010) Hazel grouse Bonasa bonasia population dynamics in a 
fragmented landscape: A metapopulation approach. Wildlife Biology 16:35-46. doi: 
10.2981/07-086 

Saniga M (2002) Nest loss and chick mortality in Capercaillie (Tetrao urogallus) and Hazel Grouse 
(Bonasa bonasia) in West Carpathians. Folia Zool. 51 

Schadauer T et al. (2024) Evaluating Tree Species Mapping: Probability Sampling Validation of Pure 
and Mixed Species Classes Using Convolutional Neural Networks and Sentinel-2 Time Series. 
Remote Sensing 16:2887 

Schäublin S, Bollmann K (2011) Winter habitat selection and conservation of Hazel Grouse (Bonasa 
bonasia) in mountain forests. Journal of Ornithology 152:179-192. doi: 10.1007/s10336-010-
0563-3 

Scridel D et al. (2022) Early-succession secondary forests following agropastoral abandonment are 
key winter habitats for the conservation of a priority bird in the European Alps. European 
Journal of Forest Research 141:1029-1043. doi: 10.1007/s10342-022-01485-1 

Shabani F, Kumar L, Ahmadi M (2018) Assessing accuracy methods of species distribution models: 
AUC, Specificity, Sensitivity and the True Skill Statistic. Acta Scientiarum Human and Social 
Sciences 

Shannon CE (1948) A mathematical theory of communication. The Bell System Technical Journal 
27:379-423. doi: 10.1002/j.1538-7305.1948.tb01338.x 

Sitzia T, Dainese M, Clementi T, Mattedi S (2014) Capturing cross-scalar variation of habitat selection 
with grid sampling: an example with hazel grouse (Tetrastes bonasia L.). European Journal of 
Wildlife Research 60:177-186. doi: 10.1007/s10344-013-0762-3 

https://doi.org/10.1016/j.ecolmodel.2025.111177


 

 38 

Smith A, Santos M (2020) Testing the ability of species distribution models to infer variable 
importance. Ecography 43. doi: 10.1111/ecog.05317 

Srivastava V, Lafond V, Griess V (2019) Species distribution models (SDM): applications, benefits and 
challenges in invasive species management. CAB Reviews Perspectives in Agriculture 
Veterinary Science Nutrition and Natural Resources 14:1-13. doi: 
10.1079/PAVSNNR201914020 

Steiner H (2007) Limitierende Faktoren für alpine Raufußhuhn-Populationen Management-
Grundlagen nach Untersuchungen im Nationalpark Kalkalpen, vol. 0021. Zobodat, pp 1-148 

Sutton GF, Martin GD (2022) Testing MaxEnt model performance in a novel geographic region using 
an intentionally introduced insect. Ecological Modelling 473:110139. doi: 
https://doi.org/10.1016/j.ecolmodel.2022.110139 

Valavi R, Guillera-Arroita G, Lahoz-Monfort J, Elith J (2021) Predictive performance of presence‐only 
species distribution models: a benchmark study with reproducible code. Ecological 
Monographs 92:e1486: 1481-1427. doi: 10.1002/ecm.1486 

Valbuena R, Adnan S, Maltamo M, Mehtätalo L, Ammaturo R, Lovejoy T (2021) Moving on from Foliage 
Height Diversity: determining maximum entropy in 3-dimensional variables 

Vanderwal J, Shoo L, Graham C, Williams S (2009) Selecting pseudo-absence data for presence-only 
distribution modeling: How far should you stray from what you know? Ecological Modelling 
220:589-594. doi: 10.1016/j.ecolmodel.2008.11.010 

Warren DL, Wright AN, Seifert SN, Shaffer HB (2014) Incorporating model complexity and spatial 
sampling bias into ecological niche models of climate change risks faced by 90 C alifornia 
vertebrate species of concern. Diversity and distributions 20:334-343 

Zeileis A, Kleiber C, Zeileis MA (2009) Package ‘ineq’. Tech. Rep. 
Zhang J, Li S (2017) A Review of Machine Learning Based Species' Distribution Modelling 
Zimmermann P, Tasser E, Leitinger G, Tappeiner U (2010) Effects of land-use and land-cover pattern 

on landscape-scale biodiversity in the European Alps. Agriculture, Ecosystems & 
Environment 139:13-22. doi: https://doi.org/10.1016/j.agee.2010.06.010 

Zohmann M, Immitzer M, Wöss M, Gossow H, Nopp-Mayr U (2014) Modelling habitat use of Tetrao 
urogallus L. in Austria for conservation issues. Journal for Nature Conservation. doi: 
10.1016/j.jnc.2014.01.002 

 

https://doi.org/10.1016/j.ecolmodel.2022.110139
https://doi.org/10.1016/j.agee.2010.06.010


 

 39 

Declaration of the use of generative AI tools 

I used ChatPDF to manage a library of publications and summaries for literature screening. I used 
ChatGPT to check grammar, improve phrasing and to aid in the data preparation process, in 
particular with regards to avoiding and identifying potential mistakes during the coding in RStudio. 
Apart from these uses, no generative AI systems were employed for creating this thesis. 



 

 40 

Appendix A: Correlation Matrix 

 
Appendix A 1: Correlation matrix of the pearson product moment correlation. 
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Appendix B: Response Curves 

 
Appendix B 1: Maxent response curve of "Elevation" in isolated runs. On the x-axis, the value of the predictor 
(m) is depicted and on the y-axis the habitat suitability on a cloglog scale (0 to 1) is depicted. The red curve 
depicts the average suitability value and the blue areas indicate 1 standard deviation from the mean. 

 
Appendix B 2: Maxent response bar chart of "Tree-species-composition" in isolated runs. On the x-axis, the 
categories of the predictor (tree-species-classes) is depicted and on the y-axis the mean habitat suitability on 
a cloglog scale (0 to 1) is depicted. The red bars depict the average suitability value and the blue bars indicate 
1 standard deviation from the mean. 
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Appendix B 3: Maxent response bar chart of "Aspect" in isolated runs. On the x-axis, the categories of the 
predictor (tree-species-classes) is depicted and on the y-axis the mean habitat suitability on a cloglog scale (0 
to 1) is depicted. The red bars depict the average suitability value and the blue bars indicate 1 standard deviation 
from the mean. 


