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Abstract

In this master’s thesis, a Maxent based species distribution model was created to identify suitable
habitats of the hazel grouse (Tetrastes bonasia) and to evaluate habitat suitability across Salzburg
using presence records of the Naturpark-WeiBbach and the Bavarian Saalforsten. The hazel grouse
is a small and elusive grouse species inhabiting mountainous forests of central Europe, with the alps
representing a major stronghold for European populations. Increased pressures from intensive
forestry and other human land uses, fragment, degrade and isolate near-natural, structurally diverse
forests, required by this bird. Understanding and spatially depicting these habitat requirements is
essential for effective conservation management. The Maxent model was built using 34 presence
records together with environmental predictors selected for ecological relevance to the hazel grouse.
The final model indicated that habitat suitability was most strongly influenced by the aspect of
slopes, as well as by the increasing distance to forest roads and the presence of mixed coniferous
stands. Unexpectedly, increased vertical heterogeneity of forest structure, measured as the Gini-
coefficient of tree heights, was associated with reduced habitat suitability. Approximately 25 % (=
665 km?) of Salzburg’s forested area was identified as suitable habitat for the hazel grouse, with larger
continuous patches occurring primarily in the inner mountain valleys and more fragmented suitable
areas found in the north of Salzburg. Suitable habitats were characterised by a higher proportion of
mixed coniferous forest stands and reduced proportions of single-species deciduous forest stands,
greater distance to forest roads, closer proximity to lotic waterbodies and a notable predominance
of northern facing slopes. The results of this master’s thesis are intended to serve as a foundation for
decision making regarding the conservation of hazel grouse populations and habitats in Salzburg.



Kurzfassung

In dieser Masterarbeit wurde ein auf Maxent basiertes raumliches Lebensraummodell erstellt, um
geeignete Lebensrdume des Haselhuhns (Tetrastes bonasia) zu identifizieren und das
Lebensraumpotenzial fur das gesamte Bundesland Salzburg darzustellen. Das Haselhuhn ist eine
kleine und seltene RaufuBhuhnart, die in Gebirgswaldern Mitteleuropas, darunter im Alpenraum und
Salzburg, heimisch ist. Aufgrund zunehmender Landnutzung in Form von intensiver
Waldbewirtschaftung und anderen Formen anthropogener Landnutzung werden unabdingbare
naturnahe Waldhabitate fur HaselhUhner immer weniger, fragmentierter und isolierter. Ein besseres
Verstandnis dieser Habitatanspriche sowie deren rdumliche Verbreitung ist ein wesentlicher Aspekt
far wirksame Artenschutz- und Managementkonzepte. Das Modell wurde auf Basis von 34
Vorkommensnachweisen aus dem Naturpark-WeiBbach und den bayerischen Saalforsten sowie
okologisch relevanten Umweltvariablen erstellt. Die Ergebnisse zeigen, dass das
Lebensraumpotenzial insbesondere durch die Hangexposition, die Distanz zu ForststraBen sowie
das Vorhandensein gemischter Koniferenbestande beeinflusst wird. Unerwartet zeigte sich, dass
eine erhohte vertikale Bestandsheterogenitat, gemessen uber den Gini-Koeffizienten der
Baumhohen, mit geringerem Lebensraumpotenzial einherging. Rund 25 % (= 665 km?) der Salzburger
Waldflache wurde als geeignet eingestuft, wobei groBere, zusammenhangender Flachen vor allem in
inneralpinen Talern im Stden Salzburgs liegen, wahrend im Norden vermehrt fragmentierte Habitate
vorhanden sind. Geeignete Lebensrdume waren gekennzeichnet durch einen hdéheren Anteil
gemischter Nadelwalder, geringere Anteile reiner Laubwalder, groBere Distanzen zu ForststraBen,
die Nahe zu FlieBgewassern sowie ein uberwiegen nordlich exponierter Hange. Die Ergebnisse dieser
Arbeit dienen als Grundlage fur zukunftige Schutz- und ManagementmaBnahmen von Haselhthnern
und deren Habitaten in Salzburg.

Vi



1. Introduction

European forests experienced a severe decline in extent and conditions throughout the 19" century
and beyond, as expanding agricultural areas, demand for fuel and industrial purposes reduced
continuous woodlands to highly fragmented forests stands (Pommerening et al. 2025). Beginning in
the mid 20™ century, forest ecosystems started to recover, largely driven by socioeconomic changes
such as agricultural intensification, change of silvicultural practices and migration of people from
rural areas into cities (Gingrich et al. 2022). This resulted in an increase of 25 % forest cover over the
last 70 years and improved ecological quality throughout Europe (Fuchs et al. 2012). The Alpine
region exemplifies this recovery trend. Over the past century, the abandonment of small-scale
agricultural plots has allowed forests to recolonise former farmland at an average rate of
approximately 0.64 % per year (Anselmetto et al. 2024). Despite these positive developments,
increasing human land use pressures continue to fragment and degrade alpine forest ecosystems.
Intensive silvicultural practices that include mandatory clearcutting and monoculture plantation
simplify stand structure and diversity of forests, while the expansion of human infrastructure isolate
habitat patches and influence disturbances. Landscape alterations such as these affect the
ecological functions of forest ecosystems as well as overall biodiversity (Zimmermann et al. 2010;
Pardini etal. 2017; Diaz et al. 2019).

Among wildlife taxa in central Europe, the predominantly forest dwelling grouse-species of the tribe
Tetraonini illustrate the responses to these dynamics: the Western capercaillie (Tetrao urogallus),
the black grouse (Tetrao tetrix) and the hazel grouse (Tetrastes bonasia) and notably the rock
ptarmigan (Lagopus muta) which is occurring above the treeline. All these grouse species are native
to Austria and of conservation and management concern and particularly susceptible to habitat
alterations (Ram et al. 2017). Mountainous regions of Europe such as the Pyrenees and the Alps
represent the westernmost distribution of this group of forest birds, whose limited dispersal abilities,
specific habitat requirements and life-histories presents them particularly vulnerable to habitat
changes. Human land use in the form of intensive forest practices appears to be the strongest
physical factor affecting habitats (Elvesveen et al. 2023), while disturbances through mountain
tourism as well as anthropogenic infrastructures such as ski-lifts or wind power plants, have been
shown to alter and often degrade the quality of grouse habitats (Hovick et al. 2014; Coppes et al.
2019; Jager et al. 2020). Within the European Union, hazel grouse, black grouse and capercaillie are
categorised as “Vulnerable” by the ICUN Red List and the capercaillie as “Least concerned”, yet all
species exhibit declining population trends (BirdLife-International 2021).

Given the vulnerabilities and conservational importance of these forest grouse species, spatially
explicitinformation on the potential distribution and habitat suitability is needed to guide monitoring
efforts, aid in conservation- planning and to assess potential impacts of human land use, such as
silvicultural practices and infrastructural planning. While there have been previous studies
investigating the habitat use of capercaillie and black grouse in Austria (Zohmann et al. 2014; Sachser
et al. 2017), almost no publicly accessible information on Austrian Hazel Grouse populations,
conditions and distribution is available from within Austria, which is largely due to the birds elusive
lifestyle and increasing rarity. However, large scale spatial information on the potential distribution
of hazel grouse has been provided by Kunz et al. (2021) for the state of Styria, yet information on its
potential distribution and habitats remain absent for most of Austria, including the state of Salzburg.



1.1. Hazel Grouse - Species Profile and Habitat Requirements

The Hazel Grouse (Tetrastes bonasia) is the smallest member of the grouse species in Europe, native
to the Palaearctic region. Its distribution is wide but patchy, spanning from central Europe eastwards
across Eurasia up to northern Japan. In Europe, hazel grouse occupy montane coniferous-deciduous
mixed forests, with large populations in Fennoscandia and mountainous regions of central Europe
such as the Dinaric Mountains, Carpathians and the Alps (Rdézsa et al. 2016). Austria, especially its
alpine regions are considered important for hazel grouse in Central Europe. Data on population sizes
and trends were originally published in 2018, estimating a national population size between 5000 to
10000 breeding pairs. However, these figures may be imprecise and current number are probably
lower due to the lack of systematic and comprehensive data not only in Austria, but for most of
Europe (BirdLife-International 2024).

The hazel grouse is protected under the EU Birds Directive (2009/147/EC), listed in both Annex I,
requiring special habitat conservation measures, and Annex I, which allows for regulated hunting on
a national level. In Austria hunting legislature and regulations are subject to federal-state level that
implement species specific regulations, aligning with national and international conservation and
species-protection laws. Currently, hazel grouse hunting is permitted in six of Austrias nine
provinces. However, the province of Burgenland recorded the last official harvest in 1968, while the
provinces of Vienna, Vorarlberg and Salzburg, have incrementally suspended hunting completely,
with Salzburg being the last state to do so in 1995, implementing a year-round protection status.
Provinces where hunting remains permitted are experiencing a reduction of annual harvest from 800
individuals to 100 individuals per year from 1948 to 2022 (Reimoser 2024). According to the
International Union for Conservation of Nature (IUCN), the hazel grouse is classified as “Least
Concerned” in Europe, largely due to the inclusion of estimations from territories of the Russian
Federation, which account for approximately 66 % of Europe’s total hazel grouse populations
(BirdLife-International 2021). However, within the European Union, this forest-bird is classified as
“Vulnerable” and exhibiting population decline or unknown trends across almost all its member-
states.

Habitat Requirements and Vulnerabilities

A habitat, as defined by Hall et al. (1997), are “the resources and conditions present in an area that
produce occupancy, including survival and reproduction, by a given organism” and the hazel grouses
requirements to its habitat are largely determined by its ground-dwelling and cryptic lifestyle. The
availability of perennial food sources in addition to vegetation structures providing shelter, nesting
sites and protective cover from predators are essential requirements on its habitat throughout the
seasons. Previous studies have addressed the importance of structurally heterogeneous and
complex forest stands, characterised by mixed-species composition and multi-layered vertical
structures and variability in canopy-closure as aspects of high quality habitats (Aberg et al. 2003;
Sitzia et al. 2014; Braunisch et al. 2019).

While this species predominantly occupies conifer-dominated stands comprising of spruce (Picea
abies) and often silver fir (Abies alba), a substantial dependency on deciduous tree species as food
sources and shelter throughout the seasons has been documented (Mathys et al. 2006; Mduller et al.
2012). Deciduous species like poplar (Populus spp.), rowans (Sorbus spp.), and birch (Betula spp.),
together with shrubs such as hazel (Coryllus avellana), willow (Salix spp.), and bilberry (Vaccinum
spp.) provide essential food sources and breeding habitats during spring (Matysek et al. 2017). In the
post-breeding period of autumn and in winter, the amount of deciduous tree species in habitats is
reduced in favour of forest stands consisting of dense understories of young spruce together with
shrubs providing cover(Sachot et al. 2003; Schaublin and Bollmann 2011; Ludwig and Klaus 2016).
Forest stands undergoing early natural succession after experiencing disturbances such as bark-
beetle infestations, provide high-quality habitats for the hazel grouse (Kortmann et al. 2018). These
areas are often colonised by pioneer-species such as elder and hazel provide both dense ground
layer cover and food sources. In winter, early succession stages of coniferous stands become
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particularly important for cover (Scridel et al. 2022). Additionally, the hazel grouse shows a
preference for linear forest structures such as edges, forest aisles and riparian zones, as these
structures enhance structural diversity in canopy-closure by supporting species like alnus, birch and
alder among others (Muller et al. 2012; Matysek et al. 2019). Conversely, hazel grouse avoid open
landscapes such as clear-cut areas, agricultural fields and transitional zones between forests and
open-lands due to increased predation risk (Huhta et al. 2017). Human land use, particularly
intensive silvicultural practices and touristic activity influence hazel grouse habitat selection as
these birds have been shown to spatially avoid these areas (Matysek et al. 2020). A long term study
focusing on a population in the bohemian forest report negative impact of intensive logging, clear-
cutting and removal of pioneer-species, causing habitat loss, increasing fragmentation and resulting
in a population decline of approximately -3.8 % per year from 2006-2019 (Klaus and Ludwig 2021).
The hazel grouse’s limited dispersal abilities enhance their vulnerability to habitat degradation and
fragmentation (Sahlsten et al. 2010). Consequently, they require relatively large, continuous forest
patches rather than small isolated high-quality habitats (Sahlsten et al. 2010; Aberg et al. 2011;
Kajtoch et al. 2012). Such fragmentation and isolation dynamics have previously led to a decreased
genetic diversity in a Carpathian hazel grouse population (Rutkowski et al. 2016), with similar findings
affecting other European grouse species (Jimenez et al. 2022; Kunz et al. 2022). In order to assess
and mitigate the impact of potential threats on hazel grouse habitats, large scale spatial analyses
provide the foundation for applied conservation efforts by assessing the distribution and quality of
potential habitats.

1.2. Species Distribution Modelling and Maxent

Species Distribution Models (SDMs) are statistical tools to predict the distribution of a species across
a landscape in relation to environmental conditions often derived from satellite remote sensing data
(Guisan and Zimmermann 2000; He et al. 2015). While there are several different families from which
SDM’s can originate, the general approach of correlative models involves georeferenced spatial
information in the form of presence-records of a species, often accompanied by corresponding
absence-data, linked to topographic, climatic and other ecological habitat conditions of a species to
modelits distribution (Elith and Leathwick 2009). The outputs of SDM contribute to ecological insight
about the spatial distribution of the target species and the quality of its habitats. Thereby, SDM’s
allow for the identification of suitable areas for conservation measures, support spatial conservation
planning by guiding monitoring, restoration and protection efforts and assist in decision-making by
assessing the impact of management actions (Lawler et al. 2011; Guisan et al. 2013) including
potential risk assessment regarding invasive species (Srivastava et al. 2019).

Traditionally, SDM’s have relied on regression based approaches like generalised linear models or
generalised additive models to predict a species probability of distribution by using the maximum
likelihood method which often relies on absence data of the species to contrast against occurrences
to create predictions (Norberg et al. 2019). However, obtaining robust absence-records can be
problematic since differentiating between true-absences and non-detections can be
methodologically difficult (Gu and Swihart 2004) and often resource intensive, particularly in wildlife
sciences (MacKenzie 2005). However, in recent decades, due to theoretical and computational
advancements, machine learning models such as random forests, artificial neural networks and
maximum entropy (Maxent) (Phillips et al. 2006; Phillips and Dudik 2008) have become increasingly
popular for managing large, complex datasets, such as remote sensing satellite data, to model
species-environment relationships by using presence-only data (Zhang and Li 2017).



Maxent

The species distribution modelling software Maxent, developed by Phillips et al. (2006) has
established itself as one of the most widely used and well-performing presence-only modelling
approaches, particularly in situations of rare and cryptic species with limited presence records (Fois
et al. 2018; Radomski et al. 2022). Since its establishment, this software has been widely used and
experienced a number of adaptations by the creators over the years, ultimately resulting in this
software becoming open source, which led to numerous implementations in statistical software
such as R (Phillips et al. 2017).

Maxent employs the Maximum-Entropy-Method to estimate model parameters and to create
predictions. In information theory, entropy quantifies the average uncertainty predicting an outcome
of random variables, where the lowest entropy indicates perfect certainty and the highest entropy
represents perfect uncertainty (Shannon 1948). In the context of species distribution modelling using
Maxent, the maximum-entropy-method assumes a uniform prior distribution of uncertainty across
the study areas, representing an equal a-priori uncertainty regarding the species occurrence. The
model only deviates from this prior assumption by including empirical evidence of environmental
conditions at known presence sites, estimating the corresponding habitat suitability values (Elith et
al. 2010). An advantage of Maxent is its ability to produce predictions using presence-only data,
contrasted against background points which are randomly sampled non-occurrence locations
representing environmental conditions of potentially available habitats to the species. Additionally,
the internal model tuning and regularisation parameters of Maxent penalise complexity, thereby
preventing overfitting and overly complex models with regards to varying sample sizes. Additional
features implemented into Maxent are the abilities to project or transfer a model fitted to specific
environmental conditions onto different geographic areas (Phillips and Dudik 2008) as well as
defining suitability-thresholds to binarize a continuous map to distinguish between
“suitable/unsuitable” habitats or “presence/absence”, particularly for practical purposes (Phillips
et al. 2006). These feature have been applied in previous studies to assess the invasion risk of non-
native species (Fernandez and Hamilton 2015) and predicting climate change impacts on species
distribution by transferring models trained on native or known ranges to novel areas or future
scenarios (Karuppaiah et al. 2023; Kang et al. 2025) and to define and compare specific suitability
thresholds (Liu et al. 2016; Shabani et al. 2018).

However, while many studies report the ease of applicability, overall robustness and high predictive
performance of Maxent compared to other presence-only approaches (Ray et al. 2017; Elith et al.
2020; Valavi et al. 2021; Ahmadi et al. 2023), there are several aspects that need carful consideration
throughout the modelling process. Addressing potential sampling-bias due to uneven sampling
effort, background sampling, multicollinearity among predictor variables and appropriate model
tuning have been reported to be crucial aspects to consider when modelling (Merow et al. 2013;
Lissovsky and Dudov 2021), as well as the choice and quality of predictor variables (Bradie and Leung
2016).

The resulting output of a Maxent analysis includes a spatial map depicting the potential distribution
of a species and quantifying the corresponding habitat suitability through a continuous gradient from
0to 1, with O indicating least suitable habitats and areas closest to 1 the most suitable. Additionally,
Maxent generates graphical representations depicting individual environmental variables responses
regarding species occurrence and quantifies the relative contribution of each predictor variable to
model performance and explanatory power. When adequately implemented and interpreted, Maxent
modelling can provide valuable ecological insights into a species-environment relationship and
practical utility for wildlife management and conservation planning.



1.3. Research Goal and Hypotheses

The main objective of this master’s thesis is to develop a Maxent based species distribution model to
predict and describe suitable habitats for the Hazel Grouse (Tetrastes bonasia) across the Austrian
province of Salzburg, using signs of occurrence obtained from the Naturpark-WeiBbach and the
Bavarian Saalforsten.

Hypotheses

H1) Vertical Heterogeneity

Since Hazel Grouse require a multi-layered forest stands of mixed age classes, | hypothesised that
habitat suitability increases with increasing vertical heterogeneity. In this work, heterogeneity is
represented as the Gini coefficient of tree-height distributions, calculated in a 150 m moving window.

H?2) Edge Proximity

Hazel Grouse have been reported to show preference towards edge structures within forests such as
forest aisles, waterbodies and others as these structures increase structural heterogeneity of
habitats and provide additional food sources of corresponding edge vegetation. | hypothesised that
habitat suitability increases with increasing proximity to a) forest roads, b) lotic-waterbodies and c)
forest edges, measured as the Euclidean distance to the nearest edge-structures.

H3) Transferability — Training extent

Since Hazel Grouse occurrences were obtained exclusively from parts of the Saalachtal region which
covers about 4.2 % of Salzburg’s total area, two modelling strategies have been compared:

1. “Saalachtal-extent” Model: training the model on the area where data has been collected
followed by projecting the fitted model onto all of Salzburg.
2. “Full-extent” Model: training the model directly on the total area of Salzburg.

| hypothesised that the local extent and projection approach will outperform the full-extent model
when evaluated by model selection criteria as the projection feature allows for the model to be
trained within the actual sampled area, thereby avoiding the influence of unsampled areas.



2. Methodology

2.1. Study Areas - Salzburg and the Saalachtal

Full Extent — Salzburg

The province of Salzburg covers an area of 7154 km? in west-central Austria, bordering Bavaria in the
north and west, and the provinces of Upper Austria, Styria, Carinthia and Tyrol to the northeast, east,
south and southwest, respectively. Geographically, approximately 90 % of Salzburg state territory
lies within the Alps, extending both into the Central Eastern Alps, primarily the Hohe Tauern range in
the south, and the Northern Limestone Alps in the north central region. These alpine areas are
separated by the Salzach and Enns river valley, which present corridors of lower elevations and
smoother relief, allowing for agricultural land use and the development of urban areas. Salzburg is
traditionally partitioned into five distinct regions: Flachgau, Tennengau, Pongau, Pinzgau and
Lungau. The Flachgau and Tennengau, encompass the northernmost extent of Salzburg, surrounding
the city of Salzburg and the city of Hallein. The regions of Pinzgau, Pongau and Lungau, collectively
known as the “Innergebirg-Regions”, are located in the west, south and east respectively, containing
the highest elevations within Salzburg, particularly within the Hohe Tauern mountain ranges.

Forests constitute the largest land cover type of Salzburg, comprising approximately 52 % of the total
area, equating to 3750 km?2. Of these, 67 % are coniferous forests, dominated by Spruce, European
beech, Larch and others. More than half of these forests are considered “Schutzwald®, essential for
mitigating natural hazards such as avalanches, mudslides and erosion of terrain. The distribution of
forested areas varies across the region with the “Innergebirgs” -regions Pinzgau (110,909 ha), Pongau
(96,157 ha) and Lungau (50,438 ha) making up the majority of forested areas over Flachgau (38,443
ha) and Tennengau (38,443 ha) (Lackner 2023). Agricultural land occupies around 14 % (1000 km?) of
Salzburg’s area and is largely concentrated within the valley floors of lower elevation in the northern
regions. Traditional land use in the form of alpine pasture farming is occurring only in higher elevation
regions. Urban Development is consisting around 4 % of the land area and is mostly concentrated
around larger urban areas such as Zell am See, St. Johann and Hallein, in addition to large suburban
areas around the capital city of Salzburg.

Small Extent — Saalachtal

The study area where hazel grouse presence has beenrecorded, lies within sections of the Salzburger
Saalachtalvalley, located in the Pinzgau region of Salzburg. The Saalachtal valley is characterised by
a mosaic of landscapes ranging from valley floors at approximately 600 m a.s.l to high peaks
exceeding 2500 m a.s.l. It encompasses several municipalities, comprising of Lofer, St. Martin bei
Lofer, Unken and WeiBbach bei Lofer, collectively encompassing 297 km? of which 193 km? are
forested and considered to be available habitat to the hazel grouse. The valley is flanked by
pronounced mountain groups such as the Reiter Alpe in the north, the Loferer massifs to the west,
and the Steinernes Meer plateau to the east, creating a diverse topographic alpine relief.

Within the Saalachtal valley lies the Naturpark WeiBbach, established in 2007 and covering about
27.8 km?of which, 21 km? are forested. The nature park is located between the Loferer, Leoganger
and Reiter Steinberge limestone massifs, adjacent to the Bavarian border and bordered on its
Austrian side by the Northern Kalkhochalpen protected area and on the Bavarian side by the
Berchtesgaden National Park and Biosphere Reserve. The majority of non-urban or agricultural areas
within the Saalachtal, including most forested areas within the Naturpark WeiBbach are owned and
managed by the Bavarian State Forests Administration of Germany, comprising a total area of 185
km?2, of which 60 % (approximately 112 km?) are forested areas. The forests within the Saalachtal
valley at lower and middle elevations are predominantly mixed deciduous-coniferous stands
consisting of Norway spruce (Picea abies), European beech (Fagus sylvatica), Silver fir (Abies alba)
and various shrubs species like hazel (Corylus avellana) and alder (Sambucus sp.). Higher elevations
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transition into subalpine coniferous forests characterised by European larch, Spruce and large areas
of dwarf pine (Pinus mugo) near the timberline. The Saalforsten span from approximately 540 m a.s.l
in the valley, up to 2643 m a.s.l at the Birkhorn peak and are characterised by steep slopes, rugged
cliffs and variable altitudinal gradients.

2.2. Presence Records and Bias File

Occurrences of the hazel grouse (Figure 1) have been obtained from forest district managers of the
Bavarian Saalforsten, who have been recording presence evidence of the grouse within their
respective forest districts. These records were not collected through a systematic survey but rather
originate from opportunistic form of evidence, which were georeferenced and archived with potential
future habitat analyses, such as this study, in mind. The questionnaire was distributed in March of
2023 to the forest district managers of the Saalforsten and peers managing the Bavarian Saalforsten,
which was completed by April 20283.
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Figure 1: Map depicting the administrative boundaries of Salzburg, parts of the Saalachtal and the Naturpark
WeiBbach as well as occurrence records of the hazel grouse. Basemap sources: Esri, TomTom, Garmin, FAO,
NOAA, USGS, © OpenStreetMap contributors and the GIS User Community.

In this questionnaire the date, longitudinal and latitudinal coordinates, the number and sex of
individuals was asked (male, female, unknown), the type of evidence of presence (direct observation,
acoustic-identification, photo/video, carcasses, faeces, feathers, tracks, nests, or “other”), as well
as some information on the participants professional background (forestry, hunters, local expert,
governmental or scientific personnel), with the option to leave additional comments or habitat
descriptions relevant to the observation. In addition, the perceived georeferenced accuracy was
asked (low, medium, high). The survey resulted in 44 unique responses of evidence of presence
overall, including one entry noted as an error by a participant. Of the remaining 43 responses, 7 were
located within the boundaries of the Naturpark-WeiBbach and the others within a 17 km radius to the
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west and south of the park all lying within the Saalachtal. 14 observations were dated and obtained
between October 2020 and October 2022, whereas 21 were undated, 8 have been classified
“historic” referring to observations made 10 to 30 years ago. Excluding historic records, the overall
presence records are 35 comprising 21 unsexed individuals, 8 males, 6 females, of which 4 were
carrying 4-6 chick (totalling 19 chicks). Thirteen observations originated from direct sightings, 1
found-dead individual documented on a camera trap and 21 from unclassified evidence-types. Self
reported accuracy of the participants was high in 5 cases, moderate in 22 and low in 8 cases.

Sampling bias was addressed through a spatial thinning procedure using the ‘spThin’-package
(Aiello-Lammens et al. 2015), by applying a minimum distance of 500 meters between observations,
thereby reducing spatial clustering and overrepresentation of frequently detected locations. The
threshold was chosen, based on the hazel grouses observed mean daily migration distance, reducing
the number of available presence records for modelling to n=34.

Subsequently, a bias file was generated, following the recommendations of (Inman et al. 2021), by
calculating a gaussian kernel density estimation with a bandwidth of 300m. The kernel density
estimation way calculated on the thinned presence records with the “density()” function using the
‘terra’ package (Hijmans et al. 2022), producing a continuous sampling density surface. This raster
was then normalised to a range of 0-1 using “calc()”-function of the ‘raster’-package and masked to
forested areas using the “terra::mask()” function, following the background-point selection
approach described in chapter 2.4.

2.3. Data Collection and Software

The remote-sensing datasets obtained to create variables representing the habitat requirements of
the hazel grouse are listed in (Table 7). The monthly mean precipitation and temperature data for the
months of April, May, and June were obtained from GeoSphere Austria Bundesanstalt fur Geologie,
Geophysik, Klimatologie und Meteorologie (Hiebl and Frei 2016). Topographic datasets consisted of
elevation, slope, and aspect, derived from the 5 m ALS-DGM, were provided by the Land Salzburg
(data.salzburg.gv.at) in ESRI ASCIl Grid format. Ecological datasets included a tree species map
(Baumartenkarte) with 26 classes, provided in GeoTIFF format at 10 m resolution by the
Bundesforschungszentrum fur Wald (Schadauer et al. 2024), based on Sentinel-2 data alongside a
canopy-closure layer, a normalized digital surface model (nDSM), and a binary forest mask, allin 1 m
resolution GeoTIFF format. Vector data representing forest roads and lotic waterbodies and
municipal boundaries of Salzburg, were obtained from Land Salzburg (data.salzburg.gv.at). The
anonymised survey of hazel grouse occurrences in hunting territories of Austria was provided by the
director of the hunting association of Salzburg, to be used for validating the results of habitat
suitability mapping.



Table 1: Topographic, ecologic and climatic datasets used in this study, including resolution, unit, format and sources.

Data-Type Data-set Period/Temporal Spatial Resolution Data Unit Format Source
Extent Extent
Topographic D|g|'|[5|1(ljgzrlraln May, 2024 Salzburg 5m Meters a.s.l. GeoTIFF Land Salzburg — data.salzburg.gv.at
Topographic Slope 5m Percent (0-90) GeoTIFF Land Salzburg - data.salzburg.gv.at
Topographic Aspect 5m Degree (0-365) GeoTIFF Land Salzburg - data.salzburg.gv.at
. Tree-Species- . .
Ecological Map November, 2024 Austria 10m Classes GeoTIFF Bundesforschungszentrum fur Wald
Normalised
Ecological SDulilatiL August, 2024 Salzburg Ix1m Meters a.s.l. GeoTIFF Bundesforschungszentrum fur Wald
Model (nDSM)
Ecological Canopy- Ix1m Percentage (0- GeoTIFF Bundesforschungszentrum fur Wald
Closure 100)
Forest-Roads NA NA Line Vector Land Salzburg - data.salzburg.gv.at
. Lotic
Ecological Waterbodies NA
Mean GeoSphere Austria - Bundesanstalt
Climatic April-June 2024 1000 x 1000 m Ce°/day GeolJSON fur Geologie, Geophysik,
Temperature . . .
Klimatologie und Meteorologie
Mean GeoSphere Austria - Bundesanstalt
Climatic S 1000 x 1000 m mm/day fur Geologie, Geophysik,
Precipitation . . .
Klimatologie und Meteorologie
Processing Forest-Mask June 2024 10x10m Binary GeoTIFF Bundesforschungszentrum fir Wald
Salzburg
Processing Municipal NA NA Polygon Vector Land Salzburg - data.salzburg.gv.at
Boundaries




All aspects regarding data-preparation and variable calculations and descriptive analyses have been
performed using R Statistical Software v.4.4.1 (R_Core_Team 2024). All visual inspection during the
data-preparation, variable-calculation and modelling process of R and Maxent output, as well as
visual depictions including the creation of maps was conducted in ArcGIS Pro version 3.5.

2.4. Data Pre-Processing and Background Selection

Data Pre-Processing

For environmental layers to be compatible with Maxent, they must share the same spatial extent,
spatial resolution and coordinate reference system. Due to most of the original datasets having been
provided in high-resolution, a resolution of 10x10m has been decided for analyses, allowing for fine-
grain analyses of potential hazel grouse habitats. The coordinate reference system chosen for this
study was ETRS89/Austria Lambert (EPSG:3416), as it employs a Lambert Conformal Conic
projection, specifically designed for Austria, reducing spatial distortion and ensuring high positional
accuracy suitable for small scale geospatial analyses (Ihde et al. 2000). Additionally, most Austrian
remote sensing data are provided in ETRS89 based projections, facilitating model integration and
minimising potential transformation errors.

Spatial alignment was performed using the “Municipal_Boundaries”-shapefile as a reference mask,
ensuring consistency across spatial extent and verifying alignment in with functions provided by the
R package ‘terra’, specifically the “project()”, “resample()”, “crop()” and “mask()” functions. This first
spatial mask standardised all layers to the ETRS89/Austria Lambert CRS at the resolution of 10x10-
meter, restricting data processing to the state areas of Salzburg. In order to create the spatial mask
for the smaller Saalachtal valley modelling extent, municipalities containing occurrence records
were manually selected from the same “Salzburg_Municipal_Boundaries”-shapefile in ArcGIS and

exported as binary raster mask.
Background Point Selection

Previous studies noted the importance of appropriately defining the spatial extent of available
habitats to the target species, which is represented as the “background” in species distribution
models (Acevedo et al. 2012; Northrup et al. 2021) to avoid over estimating the potential distribution
when fitting a model. With regards to Maxent, (Merow et al. 2013) emphasised that the background
selection fundamentally influences Maxent inferential abilities and must be conducted with the
species ecology in mind. It has been recommended by (Phillips 2008; Vanderwal et al. 2009; Castillo
and Higa 2025), that restricting background-point-selection to areas in area which the target species
can potentially occur and exclude non-habitats in order to avoid losing detailed habitat boundaries,
an approach demonstrated to improve model accuracy and overall performance in a comparative
study (Castillo and Higa 2025). The background-point selection strategy for modelling in this study
involved restricting all calculations of model variables and the modelling process to forested areas
only, as the hazel grouse does not realistically occupy landcover types such as agricultural areas,
urban areas or large scale open lands. To do this, the forest-cover map, was used as a spatial mask
using the "terra::mask()" function, constraining all valid cells within each dataset exclusively to
forested areas of Salzburg. To create the spatial mask for the smaller modelling extent, the same
process of restricting valid cells to forested areas was applied to the smaller Saalachtal extent.
However, the actual restriction of environmental predictor layers to forested areas, is applied after
variable calculation in the following chapter, ensuring that calculations were performed exclusively
on valid cells and avoiding interpolation due to the inclusion of missing or invalid data after masking,
especially during moving-window calculations.
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2.5. Variable Calculation

Topographic variables: The data set of the “Aspect” predictor variable, originally provided in degrees
from 0-360° representing the compass direction of slope orientation, was classified into eight
categorical directional classes to simplify interpretation and facilitate practical interpretability. The
reclassification was based standard directional groupings: North: 0-22.5°, Northeast: 22.5-67.5°,
East: 67.5-112.5°, Southeast: 112.5-157.5°, South: 157.5°-202.5°, Southwest: 202.5-247.5°, West:
247.5-337.5°, Northwest: 292.5-337.5°, North: 337-360°. This has been done using the “classify()”-
function from the “terra”-package”, resulting in classification of values representing cardinal
directions from 1-8 as a categorical variable of “Aspect”. For the variables “Elevation” and “Slope”,
no additional calculations were necessary.

Climatic variables: To represent climatic conditions during the core breeding period of the hazel
grouse, monthly climate data for precipitation and temperature were merged for the months of April,
May and June respectively. The averaging of the three months was performed using the “app()”
function from the terra package, calculating the mean value across April, May, June aka. the spring
period, from the “terra”-package. The resulting variables were a single raster layer for temperature in
C° and for precipitation in mm. Both layers were subsequently renamed “Seasonal_Temperature”
and “Seasonal_Precipitation” as model variables.

Ecological variables: To quantify vertical forest heterogeneity of tree heights, the Gini coefficient
was calculated based on nDSM raster layer, using a moving window approach. The Gini coefficientis
a statistical measure, originally intended to assess income inequality (Catalano et al. 2009), that is
expressed on a normalised scale from 0 representing perfect equality to 1 maximum inequality. In
previous studies the Gini-coefficient has been calculated from forest related data such as diameter
of breast height or tree-height, derived by LIDAR data, to measure structural heterogeneity (Kukunda
et al. 2019; Paluch 2021; Valbuena et al. 2021). Particularly the Gini-coefficient of tree heights has
been shown to be an effective parametrisation measuring forest heterogeneity (Reich et al. 2022).
The Gini-coefficient has been derived from the dataset using the moving window approach with a
spatial diameter of 300m, representing the average daily movement of hazel grouse. The Gini
coefficient was calculated using the “Gini()”-function from the “ineq” package (Zeileis et al. 2009).
The moving window calculations were applied to each cell using a 150 meter focal window (15x15
cells at 10 mresolution) using the “focal()” function from the “terra”-package. The resulting predictor
variable was names “Gini-tree-height”. In order to create the predictor variable “Standard-deviation-
canopy-closure” representing the variability in forest canopy structure, the standard deviation of
canopy closure was calculated, using the same moving window approach. The input raster
represented canopy closure as continuous percentage values, from which the standard deviation in
a moving window was calculated following the same approach and parameters as performed in the
Gini-coefficient calculations.

The original tree-species-dataset representing tree-species composition, has been provided as a
categorical raster layer with 26 distinct tree species and tree species assemblages, which was
reclassified into five ecologically meaningful forest type categories to improve interpretability and to
reduce model complexity. The five resulting categories were: 1) Single-Species Conifers, 2) Mixed-
Species Conifers, 3) Coniferous-Deciduous mixed, 4) Single-Species-Deciduous and 5)
Undergrowth. The reclassification was performed using the “classify()” function from the “terra”-
package and resulted in the variable “Tree-species-composition”.

To quantify the spatial proximity of edge structures relevant to hazel grouse habitat use, three
distance based raster layers were calculated representing the Euclidean distance to forest-edges,
lotic-waterbodies and forest-roads, respectively. All calculations were performed in R using the
‘terra’ and ‘sf’ package (Pebesma 2018). Vector layers representing the before mentioned habitat-
features were rasterised onto a reference grid encompassing the same dimensions as the other
raster layer, assigning values to cells intersecting the cell-grid. By applying the “distance”-function
from the terra package, the Euclidean distance was calculated for each cell. This resulted in three
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distance raster layers, “Distance_forest-edge”, “Distance_lotic-waterbodies” and “Distance_forest-
roads”.

2.6. Multicollinearity Diagnostics and Description of
Environmental Predictors

To assess multicollinearity among candidate environmental predictors used for modelling, a
Pearsons product-moment correlation was conducted to identify pairwise correlation between
numeric and ordinal variables, and the Variance Inflation Factors (VIF), were calculated to identify
higher order collinearity. The correlation analysis was performed by calculating a heterogeneous
correlations matrix using the “hetcor()” function from the R package ‘polycor’, with a threshold of r 2
0.7 to identify correlation among predictors (Fox and Fox 2022). The correlation analysis (Appendix A
1) revealed a high negative correlation (r = -0.85) between “Seasonal_Temperature” and “Elevation”,
leading to the exclusion of “Seasonal_Temperature” due to redundancy and data quality concerns of
the climate data, while “Elevation” was retained as a candidate predictor variable. Additionally,
despite the variable “Seasonal_Precipitation”, showing no statistically significant correlations with
other predictors, it was excluded from further analysis due to data quality concerns and to reduce
model complexity by limiting the number of potential predictors. To further investigate potential
higher order collinearity issues, the VIF scores for all the variables were calculated using the
“vifstep()” function from the ‘usdm’ R package developed by (Naimi and Naimi 2017), applying a
threshold of 5, with variables showing VIF values =3 intended for iterative removal. During the VIF
assessment, no further variables were excluded from the set of candidate predictors, thereby only
retaining uncorrelated candidate predictor variables. In addition to collinearity diagnostics,
descriptive statistics were calculated to provide an overview of the predictor variables prior to
modelling. This was carried out for the full modelling extent as well as the small modelling extent to
document potential differences in predictor characteristics between spatial extents. For continuous
predictors (Table 2), the mean, standard deviation (SD) and interquartile range (IQR) were calculated
and for categorical predictors (Table 3), the proportional representation (%) of each class.

Table 2: Descriptive statistics (mean, standard deviation and interquartile range) of continuous environmental
predictors for both study extents (small extent — Saalachtal, full extent — Salzburg IQR describes the range
between the 25th and 75th percentile, capturing the central spread of the data.

Variable (Small Extent) Unit Mean +SD IQR
Distance_lotic_waterbodies meter 578.33 =447 580.853
Distance_forest_roads meter 1913.535+1343 2010.51
Distance_forest_edge meter 81.668 +104.386 115.55
Elevation meter a.s.l. 1147.461 + 293.697 437.068
Standard-deviation-canopy-closure Index (0-1) 0.155%0.075 0.102
Gini-tree-height Index (0-1) 0.252+0.099 0.138
Variable (Full Extent) Unit Mean =SD IQR
Distance_lotic_waterbodies meter 381.755 = 369.054 391.438
Distance_forest_roads meter 998.807 +1150.370 1115.198
Distance_forest_edge meter 111.762+154.824 155.451
Elevation meter a.s.L. 1269.092 + 368.648 539.319
Standard-deviation-canopy-closure Index (0-1) 0.177+0.094 0.138
Gini-tree-height Index (0-1) 0.266+0.115 0.159
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Table 3: Descriptive statistics (class-proportions) of categorical predictors for both study extents.

Aspect (cardinal directions)

Proportion (%) - Small

Proportion (%) - Full

1- North 1.49 2.89
2 - Northeast 11.95 12.66
3 - East 15 14.56
4 - Southeast 15.45 13.33
5-South 15.34 13.32
6 - Southwest 14.76 13.54
7 - West 13.74 15.76
8 - Northwest 12.25 13.92
Tree-species-composition

1 - Single-Species-Coniferous 41.18 38.89
2 - Mixed-Species-Coniferous 16.21 21.89
3 - Coniferous-Deciduous mixed 26.54 17.07
4 - Single-Species-Deciduous 11.58 13.83
5-Undergrowth 4.49 8.31

2.7. Model Predictor Sets

For modelling, nine different candidate predictor sets comprising varying amounts of the eight
derived environmental predictors were constructed (Table 4), based on ecological knowledge of the
target species and in alignment with best practices in species distribution modelling using Maxent.
This approach aimed at balancing ecological relevance, interpretability and methodological
robustness in order to minimise risks associated with model overfitting. The methodological
approach aligns with principles outlines in the work of (Leitdo and Santos 2019) who emphasized
iteratively assessing the importance of predictor variable selection to ensure accurate predictions
while allowing for practical ecological interpretation of model results and (Warren et al. 2014),

suggesting that fewer predictors tend to produce more robust models while avoiding overfitting.
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Table 4: Candidate predictor sets, including core predictor variables and respective predictor combinations used for modelling.

Candidate Set

Topographic

Vertical

Distance-Variables

Variable heterogeneity
Set-1 Aspect Tree-spef:!es- Glnljtree- Elevation Distance_forest_road Distance_lotic_waterbodies
composition height
Set-2 Aspect Tree-species- Gini-tree- Elevation
composition height
Tree-species Gini-tree Standard-
Set-3 Aspect P . . deviation-canopy- Distance_forest_road Distance_lotic_waterbodies
composition height
closure
. . Standard-
Tree-species- Gini-tree- -
Set-4 Aspect . . deviation-canopy-
composition height
closure
Tree-species- Gini-tree- .
Set-5 Aspect . . Distance_forest_edge
composition height
Set-6 Aspect Tree-spef:!es- G|n|jtree- Elevation Distance_forest_edge
composition height
Tree-species- Gini-tree- Standard-
Set-7 Aspect P . . deviation-canopy- Distance_forest_road
composition height
closure
Tree-species- Gini-tree- Standard-
Set-8 Aspect P . . deviation-canopy- | Distance_forest_edge
composition height
closure
Tree-species- Gini-tree- Standard-
Set-9 Aspect P . . Elevation deviation-canopy- | Distance_forest_edge
composition height closure
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In this work, a set of core variables across all candidate sets were selected based on ecological
knowledge of habitat-feature importance and on initial model testing. The topographic predictor
“Aspect”, consistently showing high predictive performance and explanatory contribution to model
performance in preliminary test runs, was included due its potential ecological influence on
microclimate and vegetation. The ecological variable “Tree-species-composition” was also included
as a core predictor as it represents key habitat components such as food-sources and shelter
reflected by fundamental tree species or tree species composition, thereby influencing habitat
selection of the hazel grouse. In addition, the variable “Gini-tree-height”, representing vertical
structural heterogeneity, was implemented as a core predictor due to its superior predictive
performance over “Standard-deviation-canopy-closure” in preliminary testing and due to its
ecological importance for hazel grouse habitats.

In order to evaluate the contribution of additional predictor variables, the remaining ecological and
topographic variables, as well as distance-related variables, were implemented incrementally
across all candidate sets, to asses individual contributions to model performance and ecological and
practical interpretability. Variables such as “Elevation” and “Standard-deviation-canopy-closure”
were selectively incorporated to assess their ecological relevance and contribution to model
performance. Additionally, the integration of distance-based predictors “Distance_forest_edge”,
“Distance_forest_roads” and “Distance_lotic_waterbodies” was constrained to either one or two
layers per set to prevent redundancy and avoid inflating model complexity. The selection and
systematic rotation of the predictor variables across all candidate sets is intended to assess the
predictive importances and their combined or individual roles in influencing the predictive power of
the model.

2.8. Model Fitting and Selection

Model fitting was conducted using the Maxent Java Software and model calibration was conducted
in R. To assess the effect of spatial scale and evaluate robustness across varying spatial extents, the
entire modelling and model selection procedure was independently conducted at two spatial scales,
yet with identical model settings and predictor sets. In the first “traditional” approach, a model is
directly trained on the full extent of Salzburg without projection and with the inclusion of the created
bias file. In the second modelling approach, outlined by (Phillips 2008), a model is trained on the
environmental predictor set of the smaller “Saalachtal” extent and subsequently projected onto the
environmental predictor set covering the full study area (Salzburg).

All model runs employed a fixed combinations of three feature types: linear, quadratic and hinge
which were chosen, based on the recommendations provided by (Merow et al. 2014) advocating for
fewer and simpler feature types, given the amount of presence-records used in this work (n=34). More
complex feature-types such as the product- and threshold-feature should be avoided from using
below a sample size of n=80, and were not used in this work (Elith et al. 2010). In order to balance
model complexity and predictive generalisation, three different regularisation multipliers (RM’s) were
used: 0.5, 1 and 2. The choice of regularisation multipliers are based on recommendations provided
by (Ahmadi et al. 2023), suggesting that regularisation multiplier values are adequate for the given
sample size (n=34) and supported by findings from (Morales et al. 2017) indicating that lower
regularisation parameters tend to produce more robust models with fewer sample sizes. Each model
was run using 80 % of the occurrence records for training and 20 % for testing, with model robustness
assessed via 20 bootstrap replicates and jackknife-test to assess variable-importance on model
performance. This ensures that each model replication samples different subsets of the data,
therefore accounting for potential variability in model performance due to the effect of randomly
sampling training- and test-data. All model outputs are set to be generated using the recommended
cloglog transformation. The modelfitting process resulted in 27 candidate models for each modelling
extent, totalling in 54 unique models overall.
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Model Selection

After model fitting, model selection was performed separately for each modelling extent using a
systematic sequential approach following the “ORTEST” framework described by (Dorji et al. 2020).
For each extent, the 27 candidate models were first evaluated using 10™ percentile training presence
omission rate as the primary criterion. This threshold was chosen because it balances sensitivity to
presence records with predictive generalisability and is particularly suitable for small sample sizes.
In the first step, the models with the lowest omission rates were retained. If multiple models shared
the lowest omission rates, the AUC for test data (AUC_test) was used as a secondary criterion, with
higher values indicating better discriminatory ability. As an additional indicator of overfitting, the
difference between training and test AUC (AUC_Diff) was examined, with smaller values indicating
greater generalisability. Based on this ranking, the two best performing models of each spatial extent
were selected, resulting in a total of four candidate models for further consideration.

The final model was chosen in two rounds. In the first round, four candidate models were evaluated
and compared based on model performance metrics, predictor set and environmental predictor
response curves, as well as ecological plausibility through visual inspection in ArcGIS and in
consultation with my supervisors. After this evaluation, the four candidate models were reduced to
two, from which one was selected as the preliminary final model. In the second round, both
remaining candidate models were presented to the director and head-forester to discuss and
interpret the models’ output with regards to ecological realism and habitat prediction of the model,
particularly focusing on the areas of the Naturpark-WeiBbach and the surrounding Saalforsten.

2.9. Post-Modelling Processing and Validation of Suitability Map

Post-Processing

The final continuous cloglog raster layer from Maxent was converted into a binary map of “suitable”
and “unsuitable” habitats, using the “10™-percentile training presence threshold (10PT). This
threshold defines the suitability-cutoff under which 10 % of training occurrences fall, thereby only
including the 90 % of presence records with a suitability score above the lowest 10 %. Among the
multiple potential thresholds available to binarize a continuous Maxent output, the 10PT is one of the
most widely used thresholds (Rhoden et al. ; Liu et al. 2016; Shabani et al. 2018) in Maxent modelling.
Additionally, findings from (Radosavljevic and Anderson 2013) suggest that, among other candidate
thresholds, the 10PT is less sensitive to extreme low suitability scores and more conservative
compared to other threshold options.

To describe the environmental differences between areas classified as “suitable” and “unsuitable”,
descriptive statistics were calculated for all model predictors. For continuous predictors the mean,
standard deviation and interquartile range were calculated. For categorical predictors the
proportional representation (%) of each class as well as Joint Count Statistics (JCS) were calculated,
to quantify the clustering of identical categorical values “like-values” and different categorical values
“unlike-values” among neighbouring cells. This allows for the calculation of “like-ratios” which
provide a measure of spatial clustering of categorical classes with like-ratios close to 1 indicating
clustering of the same class and like-ratios close to 0 more spatially dispersed classes. Additionally,
the difference in like-ratios between suitable and unsuitable areas (like-ratio difference) was
calculated to better describe differences in the degree of spatial clustering of individual classes
between “suitable” and “unsuitable” areas, with positive values indicating stronger clustering in
“suitable” and negative in “unsuitable areas”.

Validation

To validate the resulting binary threshold, Maxent’s built in post-hoc binomial-test was used to
assess whether the number of independent test records falling into “suitable” areas are statistically
significantly higher than random chance, in contrast to the proportion of the landscape defined as
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“suitable”. A significant p-value < 0.05 indicates that the model predicts test localities in suitable
areas better than random chance. Both the continuous and binary suitability maps were qualitatively
evaluated, together with the director of the hunting association of Salzburg, by comparing its
predictions against a survey conducted in 2023 by the Salzburger hunting association (Figure 2),
assessing presence of hazel grouse in hunting territories . In this evaluation process, five large,
continuous, high-suitability areas, one from each of the five regions of Salzburg were identified, which
were present in both the continuous and binary map, to be selected for external validation. In this
externalvalidation approach, the respective hunting- or forest-district managers of these areas were
directly contacted, assessing/confirming the presence and perceived habitat suitability for the hazel
grouse in that forest territory.

[ | One occurrence

[ ] Two occurrences

I Three occurrences
N

1:500.000 - 15900 d 30.000iMater Fragebogen Rundschreiben 2023 K‘J
. . N TN v

Figure 2: Anonymised map of the 2023 survey of the Salzburger hunting association assessing hazel grouse
occurrences across Salzburg with yellow areas experiencing one occurrence, light-green two occurrences and
dark-green three occurrences.
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3. Results

3.1. Model Selection

Model selection was carried out by the ORTEST approach to balance performance against model
complexity across different predictor sets and regularisation multipliers, for both spatial modelling
extents (Table 5). For the Saalachtal extent the top ranked model (ID_Model_1) resulted in a training
AUC 0of 0.8345, atest AUC 0f 0.7831, a 10 % omission rate of 0.0714 and an AUC difference of 0.0514.
It was closely followed by Model 10 and Model 19. Model 2 showed the highest test discrimination
(test AUC =0.0.8636) and lowest AUC_difference (0.051) but at as higher omission rate of 6.9 %, while
Model 2 (Set-2, RM = 2) ranked fifth with comparable metrics. In contrast, for the full-extent of
Salzburg, Model 10 (Predictor Set 1; RM = 1), scored the highest rank within its spatial extent and
overall across all models with best discriminatory ability (AUC_train = 0.9081, AUC_test = 0.8297),
low overfitting (AUC_Diff = 0.0784) and a low omission rate (6 %), outperforming all other models
across both spatial extents. On the basis of this trade-off between predictive accuracy and model
balance, Model 10 of the full-extent was selected as the final model for habitat suitability mapping.

Table 5: Top 5 ranked Maxent models for both study extents (small extent — Saalachtal, full extent — Salzburg )
underthe ORTEST selection framework. Models were ranked by the 10th percentile training presence threshold,
ties were broken by AUC_test and the AUC_diff and subsequently compared for both study extents.

Model- B- Predictor- | AUC_ | AUC. | Omission- .
Extent p | Rank ORTEST Multiplier Set train | test | rate(10%) AuCdiff
Sa(lfﬁl‘;rg 10 1 1 Set-1 | 0.9081 | 0.8297 | 0.0643 | 0.0784
Sa(lfﬁl‘;rg 12 2 1 Set-3 | 0.8915 | 0.826 | 0.0678 | 0.0655
Sa(‘fzutil‘;rg 6 3 0.5 Set:6 | 0.8872 | 0.8202 | 0.0678 | 0.067
Sa(lfzutilt;rg 22 4 2 Set-4 | 0.8663 | 0.8103 | 0.0607 | 0.056
Sa(lfzutilt;rg 14 5 1 Set-5 | 0.8952 | 0.8047 | 0.0714 | 0.0905
Saalachtal | 1 1 Set-1 | 0.8345|0.7831 | 0.0714 | 0.0514
(small)
Saalachtal ) =, 2 0.5 Set9 | 0.8579 | 0.7764 | 0.0643 | 0.815
(small)
Saalachtal | 3 2 Set-7 | 0.8436 | 0.659 | 00678 | 0.1209
(small)
Saalachtal | 4 2 Set-2 | 0.8417 | 0.7727 | 0.0714 | 0.0514
(small)
Saalachtal |, 5 0.5 Set-7 | 0.8636 [ 0.7534 | 0.0678 | 0.069
(small)
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3.2. Final Maxent Model

The final Maxent model was built on 34 presence records and 10028 background points, converging
after a mean of 391 iterations. The model shows strong discriminatory power with a regularised
training gain of 0.556, a mean test gain of 0.746, and a mean training AUC of 0.908 and a mean test
AUC of 0.830 = 0.072. Variable contribution (Table 6) showed the variables “Aspect” to be the largest
contributor (29.61 %), followed by "Distance_forest_roads” (18.72 %),”tree-species category” (16.11
%), “Gini-tree-height” (14.67 %), “Elevation” (9.96 %) and “Distance_lotic_waterbodies” (10.92 %).
Additionally, permutation importance highlighted “Distance_forest_roads” (38.83 %) and
“Elevation” (22.24 %) as the most influential environmental predictors.

Table 6: Model predictor variables and respective variable contribution (%) and permutation importance (%).

Variable Model Contribution (%) Permutation Importance (%)
Aspect 29.6 9.7
Distance_forest_roads 18.7 38.7
Tree-Species 16.1 7.3
Gini-tree-height 14.7 15.8
Distance_lotic_waterbodies 10.9 6.1
Elevation 10 22.2

The Jackknife tests of the regularised training gain from the model (Figure 3) resulted in an overall
model gain of 0.5565 including all variables. The variable “Aspect” alone resulted in the highest
explanatory power when used in isolation, whereas the variable “Distance_lotic_waterbodies”
contributed the least. In contrast, the omission of “Aspect” from the full-extent model caused the
largest drop in training gain, while removing “Elevation” produced the smallest decrease. The
remaining predictors “Tree-species-composition”, “Distance_forest_roads” and “Gini-tree-height”
each experienced intermediate solo gains and omission effects.

Jackknife of regularized training gain for Hazel Grouse

1 Withoutvariable ®
With anly variable ®
| wiith all variables =

aspect
distance_forest_road
distance_lotic_waterbodies
elevation

gini_tree_height

Environmental Yariable

tree_species

005 010 015 020 025 030 035 040 045 050 055
regularized training gain

Figure 3: Bar chart of the jackknife analysis for each model predictor depicting the relative influence on model
performance with- and without omission — blue bars depict the single standalone contribution to the model, the
turquoise bars represent model contribution with omission of the respective variable and the red bar depicts
overall model performance including all variables.

Analysis of the model response-curves revealed the influence of each predictor on habitat suitability.
“Distance_lotic_waterbodies” (Figure 4) showed that suitability is relatively high with close proximity
peaking at approximately 100m, then declining steadily, falling below = 0,5 beyond 1900m.
“Elevation” (Appendix B 1) showed a unimodal response, with suitability increasing from peaking
between 1100-1400, before declining with increasing altitude. “Gini-tree-height” (Figure 5) showed
highest suitability at low vertical heterogeneity, followed by a steady decline with increasing vertical
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heterogeneity. The response-curve of “Distance_forest_roads” (Figure 6) showed that suitability is
lowest in close proximity to forest roads which sharply rises with increasing distance before
plateauing around a maximum suitability. “Tree-species composition” (Appendix B 2) showed that
category 5 “undergrowth” results in the highest mean suitability, followed by category 2 “Mixed-
Species-Conifers”, category 3 “Coniferous-Deciduous-Mixed”, category 1 “Single-Species-
Conifers” and lowest mean suitability in category 4 “Single-Species-Deciduous”. The response of the
variable “Aspect” (Appendix B 3) revealed that north-eastern slopes (category 2) are most suitable,
with north (category 1) and northwest (category 8) being also favoured, while east (category 3) and
west facing slopes (category 7) experience intermediate suitability and south-eastern (category 4)
and southern aspects (category 5) showed lowest suitability.

Response of Hazel_Grouse to distance_lotic_waterbodies
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Figure 4: Maxent response curve of "Distance_lotic_waterbodies" in isolated runs. On the x-axis, the value of
the predictor (m) is depicted and on the y-axis the habitat suitability on a cloglog scale (0 to 1) is depicted. The
red curve depicts the average suitability value and the blue areas indicate 1 standard deviation from the mean.

Response of Hazel_Grouse to gini_tree_height
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Figure 5: Maxent response curve of "Gini-tree-height" in isolated runs. On the x-axis, the value of the predictor (
Index =0to 1) is depicted and on the y-axis the habitat suitability on a cloglog scale (0 to 1) is depicted. The red
curve depicts the average suitability value and the blue areas indicate 1 standard deviation from the mean.



Response of Hazel_Grouse to distance_forest_road
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Figure 6: Maxent response curve of "Distance_forest_road" in isolated runs. On the x-axis, the value of the
predictor (m) is depicted and on the y-axis the habitat suitability on a cloglog scale (0 to 1) is depicted. The red
curve depicts the average suitability value and the blue areas indicate 1 standard deviation from the mean.

3.3. Habitat Suitability Mapping

The continuous Maxent cloglog habitat suitability map (Figure 7), confined to forest landcover,
encompasses approximately 3750 km? of Salzburg. The predicted suitability values range from 0.002
to 0.997 and are depicted in a continuous colour spectrum with blue-shades indicating very low
suitability and red coloured areas very high suitability. Spatially, the highest suitability zones
concentrate in the densely forested southern districts of Pinzgau, Pongau and Lungau. By contrast,
the northern region of Flachgau, including the surroundings of the capital city of Salzburg show very
few forested areas which comprise of low suitability apart from forests in the very south of the region.
The Tennengau region exhibits moderate to high suitability, primarily along its eastern border to
Upper Austria.
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Figure 7: Habitat suitability map depicting continuous cloglog suitability-scores in a colour gradient. Red
shades represent high suitability values, yellow intermediate and blue shades low habitat suitability scores.
Basemap sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors and the GIS User

Community.

The procedure of binarizing the continuous cloglog output at the 10 % training-presence threshold
(cloglog =0,428), resulted in 25.5 % (= 665 km?) of the study area after exclusion of non-forested areas
being classified as “suitable” for the hazel grouse. Below this cutoff, the model shows a training
omission rate of 7 % and a test omission rate of 21.7 %, and a post-hoc binomial test showed that
the model predicts true presences in areas defined as “suitable” above the before mentioned
threshold, statistically significantly more often than random chance (p = 0.045).
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Figure 8: Binarized habitat suitability map depicting predicted "suitable" and "unsuitable" habitats across
Salzburg based on the 10™-percentile training presence threshold (cloglog = 0,428). Basemap sources: Esri,
TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors and the GIS User Community.

The difference in environmental predictor expressions is compared for areas predicted as “suitable”
and “unsuitable” for the hazel grouse. For continuous predictors (Table 7), suitable areas were
characterised by a mean distance to lotic waterbodies 0f 316.6 m = 285.9 m, which is on average 83.7
m closer than in unsuitable areas (400.3 m * 386.2 m). The mean distance to forest roads in suitable
areas was 1769.9 m = 1538,3 m, more than twice the average distance observed in unsuitable areas
(808.9 m + 946.6 m). Elevation showed almost identical averages between suitable and unsuitable
areas of ® 1200 m. Tree height heterogeneity, expressed as the Gini-coefficient, was lower in suitable
areas (0.21 = 0.089) than in unsuitable areas (0.28 = 0.12), indicating less vertical heterogeneity in
suitable areas.

Table 7: Descriptive statistics (mean, standard deviation and interquartile range) for continuous predictors of
predicted "suitable" and "unsuitable" areas. IQR describes the range between the 25th and 75th percentile,
capturing the central spread of the data.

Variables (Suitable Areas) Unit Mean = SD IQR
Distance_lotic_waterbodies meter 316.637 + 285.868 290.352
Distance_forest_roads meter 1769.877 +1538.274 1721.947
Elevation meter a.s.l. 1271.904 +312.950 406.017
Gini-tree-height Index 0-1 0.21+0.089 0.114
Variables (Unsuitable Areas)

Distance_lotic_waterbodies meter 400.335 = 391.900 420.424
Distance_forest_roads meter 808.94 +946.628 902.044
Elevation meter a.s.l. 1270.087 +386.174 590.325
Gini-tree-heights Index 0-1 0.281%0.117 0.16
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For categorical predictors (Table 8), “Aspect” and “Tree-species-composition” distribution differed
between suitability classes, with the like ratio difference (LRD) indicating the degree and direction of
relative spatial clustering across the two suitability classes. For “Aspect”, the highest positive LRD
and thereby indicating ting spatial clustering in suitable areas, was found for northeast facing slopes
(LRD =0.117; 26,5 % in suitable and 9 % in unsuitable), followed by southwest (0.027; 18 % vs. 12 %)
northwest (0.027; 20.9 % vs. 12 %) and north (0.026; 4.6 % vs. 2.4 %). Smaller positive values were
found in for west (0,019; 9% vs. 17,5 %), south (0.016; 4,5 % vs 15.8 %) and east (0.011; 7 % vs. 16.7
%). The only negative LRD was for southeast facing slopes (-0.260; 9.5 % vs. 14.5 %). For “Tree-
species-composition® the strongest positive LRD occurred for coniferous-deciduous mixed stands
(0.294; 16.5 % in suitable vs. 17.2 % in unsuitable), followed by single species deciduous stands
(0.139; 6.2 % vs. 15.7 %), undergrowth (0.088; 7 % vs. 8.7 %) and mixed species coniferous stands
(0.148; 33.9 % vs. 19 %). Single species conifers had the only negative LRD (-0.161; 36.4 % vs. 39.5
%).

Table 8: Descriptive statistics - proportions (%) and Joint Count Statistics (JCS) like-ratio's for categorical
variables of predicted "suitable" and "unsuitable" areas. Like ratios quantify the clustering of identical
neighbouring classes (1 = strong clustering; 0 = dispersed). The like ratio difference (LRD) is the like-ratio in
suitable minus unsuitable areas, indicating where clustering is stronger.

Aspect (cardinal Proportion (%) | Likeratio- | Proportion (%) Like ratio - Like Ratio
directions) - Suitable Suitable - Unsuitable Unsuitable Difference
1-North 4.6 0.339 2.4 0.313 0.026

2 - Northeast 26.5 0.213 9 0.096 0.117
3- East 7 0.359 16.7 0.348 0.011

4 - Southeast 9.5 0.393 14.5 0.653 -0.26
5-South 4.5 0.338 15.8 0.322 0.016

6 - Southwest 18 0.306 12 0.279 0.027

7 - West 9 0.299 17.5 0.28 0.019

8 - Northwest 20.9 0.357 12 0.33 0.027
Tree-species-

composition

éc')ﬁi'f”egrfipec'es' 36.4 0.451 39.5 0.612 -0.161
é(’)m;’éfgipec'es' 33.9 0.582 19 0.434 0.148

3 - Coniferous-

Deciduous mixed 16.5 0.732 17.2 0.438 0.294
gé;'gieu'sspec'es' 6.2 0.516 15.7 0.377 0.139

5 - Undergrowth 7 0.281 8.7 0.193 0.088
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3.4. Model Validation

Both continuous cloglog habitat suitability map as well as the binary suitability map were first
evaluated by qualitatively comparing it to the anonymised survey-map provided by experts of the
Salzburger hunting association. Despite the intentional distortion of hunting-territory boundaries, by
visual inspection, regions of high predicted suitability largely corresponded with the survey results.

Five core areas were selected, one in each of the five regions of Salzburg. These areas were
“Gaisberg” in Flachgau, “Blihnbachtal” in Tennengau, “Stubach” in Pinzgau, “Kleinarl” in Pongau
and “Tamsweg” in the Lungau region. Each area was remotely validated for hazel grouse presence
and for perceived habitat suitability (Figure 9).

The hunting district managers of Bluhnbachtal, Stubach, Kleinarl and the forest district manager of
Tamsweg confirmed continuous hazel grouse occurrences and reported high perceived habitat
suitability within their territories. The validation of the Gaisberg location failed, with the forest district
manager reporting no current hazel grouse occurrences. However, it has been reported, that the
available habitats appear to be suitable for the hazel grouse.
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Figure 9: Binarized suitability map depicting suitable and unsuitable habitats in Salzburg with validated
locations marked in green circles. Basemap sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, ©
OpenStreetMap contributors and the GIS User Community.
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4. Discussion

4.1. Summary of Key Findings

In this study, a Maxent based species distribution model was created to identify suitable habitats for
the hazel grouse and evaluate habitat suitability across the province of Salzburg. The final, full-extent
model demonstrated strong predictive performance (mean training AUC = 0.908; test AUC = 0,830;
omission rate = 7 %), outperforming all alternative candidate models for both spatial extents.
Suitability of habitats was most strongly influenced by the slope aspect, was well as by the increasing
distance to forest roads and the presence of mixed coniferous stands. Unexpectedly, increased
vertical heterogeneity of forest structure, measured as the Gini-coefficient of tree heights, was
associated with reduced habitat suitability. Approximately 25 % (= 665 km?) of Salzburg’s forested
area was identified as suitable habitat for the hazel grouse, with larger continuous patches occurring
primarily in the inner mountain valleys and more fragmented suitable areas found in the north of
Salzburg. Suitable habitats were characterised by a higher proportion of mixed coniferous forest
stands and reduced proportions of single-species deciduous forest stands, greater distance to forest
roads, closer proximity to lotic waterbodies and a notable predominance of northern facing slopes.
In addition, suitable habitats are characterised by more spatially self associated or “continuous”
forest stand types and slope aspect/orientation as described by the joint count statistics.
Unexpectedly, and contrary to hypothesis 3, the full extent model outperformed the small extent
projection model. These findings of this study partially support the initial hypothesis regarding the
influence of edge-related variables but contradicted expectations regarding the influence of
structural heterogeneity.

4.2. Model Performance and Relationship between Environmental
Predictors on Habitat Suitability

The final model was built on the full-extent, outperforming all other candidate models from both sets
of the small extent and the full-extent. The chosen model scores the highest mean traing AUC (0.908)
and test AUC (0.830 * 0.072), indicating strong discriminatory abilities. The model showed modest
overfitting (AUC_diff = 0.078) and a low 10 percent omission rate (6 %), outperforming the best small
extent model. In addition to evaluating model performance diagnostics, a qualitative visual
comparison of the best small extent projection model with my supervisors and associates of the
Naturpark WeiBbach respectively suggested the full-extent model to be the better fitting. This led to
the rejection of the third hypothesis of spatial transferability, namely that the small extent model
following a projection outperforms the full-extent model based on the used model selection
approach. While there is currently no review study comparing Maxent projection model performance,
findings from Sutton and Martin (2022) comparing projected vs. non-projected models suggest that
non-projected models perform better under certain conditions. In addition, Merow et al. (2014)
suggested that creating a robust and valid projection model requires specific model tuning which
was not the case in this study, as the projection feature was mainly used for comparative model
selection.

In the following section, the environmental predictors are discussed, based on the results of the
jackknife-test as well as response-curves depicting the relationship between a variable and its
influence on habitat suitability.

Topographic Variables

The jackknife analysis revealed the importance of slope orientation, with the variable “Aspect” alone
yielded the highest gain when used in isolation and its omission caused the greatest drop in overall
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model performance. The responses of “Aspect” revealed a clear north/south gradient. According to
model results, northern slopes are most suitable while western aspects are providing intermediate
suitability and southern slopes area least suitable. This suggest that hazel grouse may prefer cooler
and more moist northern facing slopes in Salzburg. It has been reported in a quantitative synthesis
by Bradie and Leung (2016) who analysed multiple variables used in Maxent models, that high-quality
datasets, such as digital terrain models derived by remote sensing data, contribute most to model
performance. Apart from ecological effects, this can explain the strong observed influence of the
variable “Aspect” in this model. However, the jackknife test showed that the variable “Elevation”
which is based on a dataset of equal quality and origin, contributed second to last to overall model
performance which is in contrast to these findings. However, it has been reported by Smith and
Santos (2020) that Maxent is able to correctly discriminate between true and false influences of
environmental predictor, particularly when data quality and the resolution of environmental layers is
high, and assigning correct variable importance. This suggests that the strong influence of “Aspect”
in this study, may reflect actual ecological factors, rather than modelling artifacts.

Additionally, while the variable “Elevation” contributed the least to overall model performance, in
preliminary testing and comparisons of candidate predictor sets, elevation appeared to have a
subjectively important perceived effect of influencing the model prediction of forest-composition in
high altitude areas. For example, visual inspections of models with and without revealed that
incorporating “elevation” into the model allows for correctly identifying high-altitude forests i.e
“Krummbholzzone” as unsuitable habitats for the hazel grouse. However, since not all permutations
of potential predictors sets were tested, it is not possible to confidently attribute the proposed
discrimination ability by incorporating “Elevation” into the model.

Structural Variables

Results of the Maxent analysis and visual inspection of the response-curves suggest that suitability
of Hazel Grouse habitats declines with increasing vertical heterogeneity (=Gini Coefficient) with the
highest predicted suitability being expressed in low Gini indices (0,1 - 0,2) and dropping off as
structural complexity increased. This relationship directly contradicts the first hypotheses, which
proposes that greater vertical heterogeneity would increase habitat suitability and is therefore
rejected. However, while this led to rejecting the first hypothesis (H1), this is in accordance with
findings from Sitzia et al. (2014) who analysed stand structure and composition in 30x30m cells
derived from a field survey, suggesting that hazel grouse prefer more homogeneous stands with no
more than one layer, but with a rich and diverse understory. While the regular Gini-coefficient is to be
interpreted where 0 represent perfect homogeneity and 1 represent perfect heterogeneity, research
from Valbuena et al. (2021) suggest that Gini-coefficients calculated for one-dimensional forest
variables such as “tree-heights”, as in this study, maximum realistic vertical heterogeneity is
expressed at a Gini-coefficent of 0.33. As the results of the Maxent response curve of “Gini-tree-
heights” (Figure 5) suggest that hazel grouse prefer lower vertical heterogeneity further qualitative
analysis is needed to directly link a Gini-coefficient to vertical heterogeneity in Austrian forests.
Additionally, the moving window size (150 m), which was originally chosen based on the mean daily
movement range of hazel grouse, may be too large to capture fine scale variation in forest-structure
due to the increased smoothing effect of the moving window calculation. It has been suggested by
Paluch (2021) that appropriate moving window sizes are around 15 m for capturing variation in forest
structure. In the light of this, the numerical results regarding the Gini-coefficient of tree heights
reported in this study must be interpreted with caution as they may be not meaningful due to the
misconstruction of the moving window.

The variable “Tree-species-composition” emerged as a predictor of medium importance on overall
model performance. The classes within show similarly strong influence on habitat suitability with the
category “Undergrowth” emerging as the class depicting the highest mean suitability with “single-
species deciduous” experiencing the least. While the difference is only marginal across classes,
“undergrowth” emerging as the most suitable class is supported by findings of Sitzia et al. (2014) who
found that ground layer composition to be one of the most important habitat factors positively
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influencing suitability. Conversely, “single-species deciduous” emerging as the least suitable class
is reasonable, as montane forests containing large proportions of coniferous tree species are the
primary forest habitats in Europe. It must be noted that the authors of the original dataset Schadauer
et al. (2024) report a potential underrepresentation of mixed tree-species classes in the dataset, as
two tree-species contribute to a single cell of the original size of 10x10 m, thereby posing difficulties
to the classification algorithm. This was not addressed in the modelling process of this study, which
may result in overrepresentation of single-species classes and underrepresentation of mixed-
species classes.

Edge-Distance-Based Variables

The second hypothesis proposed that habitat suitability increases with proximity to egde structures
such as waterbodies and forest roads. The results of this study led to accepting the hypothesis
regarding “Distance_lotic_waterbodies” but rejecting it for “Distance_forest_roads”. The response
curves (Figure 6) depicting “Distance_lotic_waterbodies” (H2a) experience the expected effect
where suitability is peaking) at around 100-500 m from streams, which remain relatively high up to
1000 meters and then declining with increasing distance. However, while the relationship appears
relative clear in the response of habitat suitability values, the jackknife-test revealed that the variable
“Distance_lotic_waterbodies” contributes the least to overall model performance. In contrast, the
response curves for “Distance_forest_roads” (Figure 6) is inverted, depicting lowest suitability within
500m of forest roads and only rising from a distance of 2000m upwards, led to rejecting the second
hypotheses (H2b). The jackknife test revealed that the variable “Distance_forest_roads” contributed
modestly to model performance, similar to “Gini-tree-heights” and “Tree-species-composition”.

The effect and influence of forest roads and other linear structure such as hiking trails on hazel grouse
appears to be highly variable and often revealing contradicting impact depending on the context of
the study. Several studies (Muller et al. 2012; Matysek et al. 2019; Scridel et al. 2022) attribute
presence or close proximity of edge structures like forest roads a positive effect on habitat quality by
increasing diversification of vegetation assemblages and variability in canopy-closures regimes.
Additionally, findings from Matysek et al. (2022) suggest that hazel grouse brood and chick survivalis
increased within a 100m radius of forest roads. However, the same or similar structures as forest
roads, such as hiking trails are not only a potential source of disturbance but can also increase
predation risk for ground-dwelling birds by facilitating access for predators such as foxes, martens
and corvids(Kdmmerle and Storch 2019; Matysek et al. 2020; Klaus and Ludwig 2021). Notably,
findings from Sachot et al. (2003) did not find any statistically significant influence of forest roads
presence within a 1 km? radius on hazel grouse occurrence, attributing it to the cryptic avoidance
behaviour of the hazel grouse. This suggests, that the effect and impact of structures such as forest
roads and hiking trails may be highly variable, depending on locality and context. Based on this, the
effect captured by implementing the variable “Distance_forest_roads” in this study appears to have
identified forest roads as a source of disturbance rather than a feature of structural enrichment in
hazel grouse habitats.
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4.3. Characteristics and Spatial Patterns of Suitable Habitats
across Salzburg

The binary classification of the Maxent cloglog output at the 10™-percentile training presence
threshold, representing the threshold under which the lowest 10 % of suitability scores of presence
records, reveals spatial distinction between “suitable” and “unsuitable” habitats for the hazel grouse
across Salzburg. The post-hoc binomial test (p = 0.045) confirmed that hazel grouse presences occur
statistically significantly more often in areas defined as “suitable” by the aforementioned threshold
than expected by random chance. Suitable areas comprise approximately 25.5 % (=665 km?), of the
overall potential habitat of the hazel grouse across Salzburg. Similar estimations on the amount of
suitable habitats are reported in a long term study from a finish island (Saari et al. 1998), investigating
the habitat selection of the hazel grouse based on quantitative and qualitative patch metrics, who
estimated the amount of suitable habitat to be 32 % across all landcover types.

Based on visual inspection, a large amount of non-continuous forest patches as well as isolated
pixels of high-suitability cells is present across Salzburg, particularly in the northern region. However,
large and continuous forest patches predicted as potentially suitable for the hazel grouse were
present, particularly in secluded valleys of the regions of Pinzgau, Pongau and Lungau. These
predictions are largely in accordance with the survey of the hunting association of Salzburg (Figure
2). Inthe south-west Pinzgau region of Salzburg, areas predicted as “suitable” occur to a large degree
in the valleys south of the Salzach river, particularly in the secluded lower valleys of the Hohe Tauern
mountain range. Among the subgroups of the Hohe Tauern range, suitable habitats are predicted to
occurinthe eastand westvalleys of the “Granatspitzgruppe” and “Venedigergruppe” with the valleys
of the adjacent “Glocknergruppe” providing fewer suitable areas. In the central-south Pongau region
large continuous areas of predicted suitability were identified around the “Radstadter Tauern” near
the city of Sankt Johann and the “Ankogelgruppe” to the east of the city of Bad Gastein, as well as in
the very southern valleys of the “Goldberggruppe”. The easternmost Lungau regions is orographically
separated by the Niedere Tauern from the rest of Salzburg. Predicted suitable areas are largely
occring in the east of the region bordering Styria. In particular south of the city of Tamsweg, within the
“Schladminger Tauern” and the northern extensions of the Hafnergruppe in the south bordering the
state of Carinthia provide suitable habitats for the hazel grouse. In the north-central Flachgau region
of Salzburg, large areas of predicted suitability were identified in the Osterhorngruppe and parts of
the Salzkammergut. In the central Region of Salzburg, large continuous areas of high predicted
suitability are located in the Blihnbachtal valley which is flanked by the Hochkdnigstock mountain
range in the south and the Hagengebirge of the Berchtesgadener Apen to the north, in addition to
being separated in the east by the Salzach river.

Characteristics of Suitable Habitats

Tree-species-composition (Table 8) in predicted “suitable” areas are dominated by mixed-species
coniferous stands compared to unsuitable areas, with similarly high proportions of single species
coniferous stands of in suitable and unsuitable areas. The proportion of single species deciduous
stands are reduced in “unsuitable” compared to “suitable” areas with similar proportions of
undergrowth for both suitability classes. The proportions of coniferous and deciduous mixed stands
is similar in for both suitable and unsuitable areas. The like ratio difference (LRD) derived from the
Joint Count Statistics indicates how strongly and in which suitability class, the respective classes of
categorical variables tend to be more spatially aggregated or clustered. For “Tree-species-
composition”, the largest positive LRD values was observed for coniferous-deciduous mixed species
suggesting that these stands tend to occur in more spatially continuous amounts compared to
unsuitable patches. Mixed species coniferous stands also showed a positive LRD similar to single-
species deciduous. In contrast, the largest negative LRD values is exhibited for single-species
coniferous stands indicating a greater clustering in unsuitable areas. Undergrowth showed a smaller
positive LRD. These proportion patterns are largely consistent with previous findings from Klaus and
Ludwig (2021) in the bohemian forests reporting that habitat suitability increases from 10 %
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deciduous tree species proportion with an optimum between 30 to 40 % and a maximum of 85 %
coniferous amount and Mathys et al. (2006) who found that an amount of 35 % deciduous species
together with 45 % coniferous species and shrubs comprise suitable hazel grouse habitats and Aberg
et al. (2003) who reported similar proportions of deciduous species between 5-40 %.

The variable “Aspect” (Table 8) is prominently different in suitable and unsuitable areas.
Proportionally, north eastern and north-western aspects were more common in suitable areas, while
east, south, and west were less common. LRD’s indicate stronger spatial clustering in suitable areas
for northeast , southwest and north , while west , south and east showed smaller positive LRD
values. The only negative LRD occurred for southeast, indicating greater clustering in unsuitable
areas. While there is no clear preference reported of hazel grouse towards aspect direction, some
studies report tendencies towards southern exposures (Steiner 2007; Matysek et al. 2019). The clear
prominence and clustering of northern aspects in suitable areas may reflect cooler and shaded
areas, allowing for the establishment of a dense understory and larger amounts of mixed forests,
which are favoured by the hazel grouse (Kortmann 2022).

For continuous environmental variables (Table 7), the distances to lotic waterbodies were on average
closer and with fewer variations in distances, in suitable areas than in unsuitable areas. These results
are in accordance with previous findings from (Matysek et al. 2019) who found that occupied sites
hat a statistically higher occurrence of streams available within a 300m radius than non-occurrence
sites. The average distance to forest roads was much greater in suitable areas than in unsuitable
areas. This indicates, as mentioned in the previous chapter, that suitable habitats tend to be more
remote and potentially less affected by anthropogenic disturbances and silvicultural practices. Tree
height heterogeneity, expressed as the Gini-coefficient of tree heights, was lower in suitable areas
than in unsuitable areas indicating a more even vertical forest structure in suitable habitats, whereas
unsuitable habitats tend to exhibit greater vertical heterogeneity. However, as mentioned in the
previous chapter, the interpretation of the Gini-cofficient has presented itself as a challenge to be
interpreted, due to the moving window size calculations. The average altitude of both suitable and
unsuitable habitats in the model is largely the same around 1270 m a.s.l., with similar variation
across suitability classes. This pattern reflects the broad ecological plasticity of the hazel grouse,
which is known to occur across a wide altitudinal gradient from lower mixed forests, up to avalanche
paths near the treeline(Kunz et al. 2021). However, despite this flexibility with regard to elevation, the
hazel grouse consistently depends on small scale habitat structures such as forest edges as well as
certain tree species, which may occur only locally or temporarily.

4.4. Limitations and Improvements

In this study, limitations must be considered when interpreting the outcomes. The number of
occurrence records of the hazel grouse in this study, while sufficient enough for robust modelling,
were largely clustered within a discrete region of Salzburg. Although, best-practice efforts were made
to address uneven sampling effort by mitigating spatial sampling bias, incorporating additional
occurrence records will most likely result in a more robust and precise model. Furthermore, the
computational resources imposed constraints, especially regarding the intensive memory and
processing requirements associated with handling large geospatial datasets, particularly with a given
cell size of 10m. These limitations restricted certain analyses such as calculating density-based
metrics instead to Euclidean distance metrics. Another aspect that needs to be addressed is the
exclusion of climatic and seasonal habitat use from modelling. Although climatic variables were
selected as candidate models and are recognised as important predictors in a Maxent analyses
(Bradie and Leung 2016), these predictors were excluded due to multicollinearity issues and stark
differences in spatial resolution of the datasets and due to data quality concerns. The climate data
were available in 1000x1000 m resolution, and the subsequent resampling to the target resolution of
10x10 m would lead to a generating smoothed values through interpolation across the study extent.
Not only is using this climate dataset in this analysis problematic regarding the modelling process,
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but according to the authors, climate predictions tend to be particularly prone to inaccuracies, in
mountainous regions such as is the case in this study (Hiebl and Frei 2016). Nonetheless, previous
research comparing seasonal habitat selection patterns of the hazel grouse indicated minor
differences in variation of habitat use, notably a higher reliance on coniferous tree species during
winter, as elaborated in chapter 1.2. Factors such as predation and human disturbance were not
explicitly accounted for in this study. Efforts were made to incorporate human disturbance into the
study design by implementing data reflecting recreational land-use (Strava), yet these data were
unobtainable for this study. The most recent review study on the impact of predation on grouse
species found a negative impact of predator abundance on chick and nest survival (Kammerle and
Storch 2019), particularly affecting hazel grouse in fragmented habitat patches, and patchesin close
proximity to agricultural areas (Saniga 2002; Huhta et al. 2017).

Certain methodological refinements could further enhance the robustness and ecological validity of
this research. Implementing quantitative model selection and -tuning approaches such as the R
packages KUENM or ENMeval could improve the optimisation of predictor combinations as well as
model parameters. These methods utilise derivatives of the Akaike Information Criterion (AIC),
assessing model performance, which were not applied in the current study. The present study
followed a semi-qualitative and quantitative approach, based on the recommendations by (Dorji et
al. 2020), prioritising ecological relevance and expert evaluation. Integrating the aforementioned
mathematically driven model-tuning methods may offer more precise parameter estimates and an
overall more robust modelling approach. However, this was not possible in this study, due to
computational limitations. While the background point selection performed in this study appears to
have contributed to overall accuracy of model predictions, further improvements may be achieved
by not only spatially restricting the background of the model, but adapt the number of background
points in relation to the size of the study area (Rausell-Moreno et al. 2025). Regarding model
variables, calculating distance based metrics for frequent or large-scale landscape structures such
as wind power plants or ski-lifts and implementing these aspect as potential sources of disturbance
in the model (Coppes et al. 2019). Further refinement could be achieved by reassessing the
application of the Gini-coefficient of tree heights and comparing it to other continuous and non-
discrete alternatives, capable of capturing fine-scale variation in vegetation structure, while offering
amore interpretable and practically applicable parametrisation. Lastly, since studies report variable
effect of linear forest structures such as forest roads and hiking trails on habitat suitability, it is
essential to address that these habitat features can either act as a source of disturbance or as
elements of structural enrichment, thereby positively or negatively affecting hazel grouse habitats.
Therefore, | recommend that future habitat modelling should pre-assess any potential effects of
linear forest structure both qualitatively and quantitatively before modelling.

4.5. Future Research and Management Implications

Future Research

Validation remains an important aspect for evaluating and confirming model predictions. While
remote validation of larger, high-suitability patches in cooperation with the director of the Salzburger
hunting association and district forest managers has contributed to initial validation, systematic field
validation is necessary to further attribute validity to the model. Conducting systematic surveys
across both areas predicted as “suitable” and “unsuitable” would enhance understanding of the
model accuracy and contributing habitat features, thereby providing more reliable information for
conservation decisions.

Future research could further refine the present habitat suitability maps by excluding smallindividual
high-suitability cells, and assessing a minimum continuous patch size necessary for harbouring
continuous hazel grouse populations and comparing it to the findings of (Sahlsten et al. 2010; Kajtoch
et al. 2012). Subsequently, the degree of fragmentation across these defined patches can be
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assessed based on an approach proposed by (Rivas et al. 2022). Additionally, integrating connectivity
metrics may offer insights in the dispersal potential of the hazel grouse, resulting in a more coherent
and comprehensive understanding of the conditions and distribution of hazel grouse habitats
throughout Salzburg.

Moreover, future research and conservation efforts must extend beyond local or regional scales.
Management and conservation efforts with the goal of sustaining viable wildlife populations, such as
the hazel grouse, cannot be restricted to small scale local or regional units. Assessing habitat
connectivity and suitability across administrative and national boundaries is a necessary aspect in
order to sustain a viable and long-term hazel grouse populations within Austria and throughout the
alpine region. These large-scale approaches can allow for the identification of potential corridors for
the target species that support migrations processes, genetic exchange and population resilience.

Management Implications and Recommendations

From an applied management perspective, several implications arise from this study. For wildlife
management, the habitat suitability map can guide targeted monitoring efforts, allowing for the
efficient allocation of resources. Conservation and maintenance of identified high-suitability
habitats with confirmed continuous occurrences should be prioritised to sustain existing hazel
grouse populations. Additionally, the identification of suitable yet unoccupied habitats can inform
efforts aimed at habitat conservation and restoration for potential colonisation of the hazel grouse.
In order to keep the habitat model and the habitat suitability map relevant for conservation and
management purposes over time, the model framework used in this study can be repeated at regular
intervals. Using the same set of environmental predictors, while incorporating additional presence
records and updated environmental data allows for the re-evaluation of habitat suitability across
Salzburg and the detection of shifts in model outputs, driven by environmental changes or sampling
effort. Future presence data should be collected systematically, including in currently unsampled
but potentially suitable areas, using targeted point-checks in predicted habitats without prior
evidence of occurrence using acoustic monitoring devices such as AudioMoth.

Forest management strategies should emphasize the establishment and maintenance of multi-
species mixed forests, characterized by diverse stand structures and a proportion of deciduous tree
species and shrubs between 10-15 %. Specifically, forest management should actively promote
species beneficial to the hazel grouse such as poplar, alder, willow, birch and shrubs, particularly
bilberry. Intensive silvicultural practices, including ground-clearing and clearcutting should be
avoided, with selective logging practices being preferred to sustain habitat integrity. It is
recommended to reduce forest road usage during sensitive periods, notably the breeding and chick
rearing period from April to June. Additionally, allowing for natural succession, particularly in
coniferous stands offer essential winter shelter and mixed stands for vital summer brooding can
provide essential elements of high suitable habitats. In the context of tourism and landscape
planning, directing human recreational activities away from secluded, high-suitability areas is
recommended, particularly during critical episodes from April to June. The created habitat suitability
maps can be integrated into ecological landscape planning, by providing a basis for assessing and
mitigating the potential impacts of infrastructure development and increased human presence on
hazel grouse populations.
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Appendix A: Correlation Matrix
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Appendix A 1: Correlation matrix of the pearson product moment correlation.
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Appendix B: Response Curves

Response of Hazel_Grouse to elevation
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Appendix B 1: Maxent response curve of "Elevation" in isolated runs. On the x-axis, the value of the predictor
(m) is depicted and on the y-axis the habitat suitability on a cloglog scale (0 to 1) is depicted. The red curve
depicts the average suitability value and the blue areas indicate 1 standard deviation from the mean.
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Appendix B 2: Maxent response bar chart of "Tree-species-composition” in isolated runs. On the x-axis, the
categories of the predictor (tree-species-classes) is depicted and on the y-axis the mean habitat suitability on
a cloglog scale (0 to 1) is depicted. The red bars depict the average suitability value and the blue bars indicate
1 standard deviation from the mean.
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Appendix B 3: Maxent response bar chart of "Aspect"” in isolated runs. On the x-axis, the categories of the
predictor (tree-species-classes) is depicted and on the y-axis the mean habitat suitability on a cloglog scale (0

to 1)is depicted. The red bars depict the average suitability value and the blue bars indicate 1 standard deviation
from the mean.
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