Author: Hannah Louisa Scheicher

Combination of LiDAR and Sentinel data for wall-to-wall vegetation
parameter assessment in the National Park Kalkalpen

Master’s thesis

submitted in fulfillment of the requirements for the
Master of Science
in Applied Physical Geography and Mountain Research
at the University of Graz

Faculty of Environmental, Regional and Educational Sciences

Supervisor and Reviewer:
Manuela Hirschmugl, Ass.-Prof. Dr.rer.nat.

Department of Geography and Regional Science

2024



Acknowledgement

| would like to sincerely thank everyone who supported me during the process of writing my

master thesis.
First and foremost | would like to thank Ass.-Prof. Dr.rer.nat. Manuela Hirschmugl for the
professional support, the motivation, and the numerous suggestions, without which writing my

thesis in this form would not have been possible.

Thanks also go to my family and my boyfriend for emotionally supporting me through my

studies.
And also, many thanks to my friends proofreading my work.
You all have been so very patient.

Hannah Scheicher
Minchen 07.04.2024



Abstract

Forest ecosystems play an important role in preserving biodiversity, providing ecoservices and
storing carbon. Monitoring vegetation parameters such as vertical forest structure or
aboveground biomass can provide important information about the forest conditions. LiDAR
has been proven to be a powerful tool for estimating the canopy height and additional
vegetation parameters. This thesis compares the accuracy of spaceborne Global Ecosystem
Dynamics Investigation (GEDI) LIiDAR data and airborne laser scanning (ALS) data when
modelling wall-to-wall vegetation parameters for an area with difficult topographic terrain and
a complex vegetation structure in the Austrian Alps. The chosen vegetation parameters are
the mean and maximum vegetation height, the Foliage Height Diversity (FHD) and the Above
ground Biomass Density (AGBD). Their datasets are combined with different combinations of
Sentinel-1 VV/ VH backscatter, Sentinel-1 textural metrics, Sentinel-2 multispectral bands and
Sentinel-2 derived vegetation indices. The machine learning algorithm Random Forest (RF) is
utilized to model wall-to-wall regressions with a 10x10 m resolution. Two different forms of
sampling are employed: cells of a fishnet grid placed over the study area and the GEDI plots.
Regressions are calculated based on ALS data provided in the sampled fishnet grid cells and
GEDI plots, that are then validated with the ALS data. Regressions modelled that are based
on GEDI data are validated with the help of ALS data or through a cross-validation using the
GEDI data. An assessment is made, which Sentinel variables contribute the most to the
prediction of the different vegetation parameters. The red band as well as vegetation indices
calculated with red edge bands achieve the highest feature importance when calculating the
mean vegetation height and the AGBD. The green band and the first vegetation red edge band
contribute the most when calculating the maximum vegetation height and the FHD. For the
FHD the red band also makes a noticeable contribution. Neither Sentinel-1 backscatter, or
texture variables were strongly correlated to any of the vegetation parameters. Nevertheless,
the mean and standard deviation texture variables show in part a high feature importance,
improving the accuracy of the regressions. Comparing the RMSE and MAE values, the
accuracy of regressions trained and validated with ALS data is similar to the accuracy of
regressions trained and validated with GEDI data. Though it is noticeable that the R? values of
the regressions trained and validated with GEDI are lower compared to all other regressions.
Generally, regressions based on GEDI data possess a much smaller value range compared
to regressions based on ALS data. However, the models utilizing GEDI data manage to
reproduce the pattern of the horizontal value distribution of all four vegetation parameters.
Leading to the conclusion that GEDI is a viable option when assessing vegetation parameters

for inaccessible and challenging areas.



Zusammenfassung

Waldokosysteme spielen eine zentrale Rolle fur den Erhalt der biologischen Vielfalt, die
Bereitstellung von Okoystemdienstleistungen und die Speicherung von Kohlenstoff. Die
Erfassung von Vegetationsparametern, wie der vertikalen Waldstruktur oder der Biomasse
kann Auskunft geben Uber den Zustand der jeweiligen Waldflache. LIDAR hat sich als
leistungsstarkes ~ Werkzeug zur  Schatzung der Kronenhéhe und  weiterer
Vegetationsparameter etabliert. Diese Arbeit untersucht die Starken und Schwéachen
weltraumbasierter LiDAR-Daten des Global Ecosystem Dynamics Investigation (GEDI) im
Vergleich zu flugzeugbasierten Laserscanning-Daten (ALS) bei der Modellierung
flachendeckender Vegetationsparameter fiir ein Untersuchungsgebiet mit anspruchsvoller
Topographie und komplexer Vegetationsstrukur innerhalb der 6sterreichischen Alpen. Hierflr
werden die vier Parameter mittlere und maximale Vegetationshdohe, die Foliage Height
Diversity (FHD) und die Abovegroung Biomass Density (AGBD) gewahlt. Im Anschluss werden
die Datensatze der vier Vegetationsparameter mit Sentinel-1 VV/VH Backscatter, Sentinel-1
basierten Texturmetriken, multispektralen Sentinel-2 Bandern und Sentinel-2 basierten
Vegetationsindizes kombiniert. Der maschinelle Lernalgorithmus Random Forest (RF) wird
verwendet, um flachendeckende Regressionen mit einer raumlichen Auflésung von 10x10 m
zu modellieren. Als Sampling Formen werden sowohl die GEDI Plots, als auch die Zellen eines
Uber dem Untersuchungsgebiet platzierten Netzgitters verwendet. Der ALS
Trainingsdatensatz wird in Form von Netzgitterzellen oder GEDI Plots bereitgestellt und die
daraus berechneten Regressionen wiederum mit dem ALS Datensatz validiert. Mit GEDI
Daten modellierte Regressionen, werden entweder durch die ALS Daten oder mithilfe einer
Kreuzvalidierung durch die GEDI Daten validiert. Bedeutsame Sentinel Variablen fur die
Modellierung der mittleren Vegetationshdhe und der AGBD sind hierbei das rote multispektral
Band und mit ,red edge” multispektral Bandern berechnete Vegetationsindizes. Das griine
multispektral Band und das ,first red edge“ multispektral Band tragen am meisten zur
Berechnung der maximalen Vegetationshohe und der FHD bei. Auch ist das rote multispektral
Band bedeutsam fir die Berechnung der FHD. Des Weiteren tragen die Sentinel-1
Texturmetriken merklich zur Modellierung der Parameter bei, trotzdem sie nur sehr schwach
mit diesen korrelieren. Die Glte der Regressionen wird anhand des RMSE, MAE und R?
verglichen. RMSE und MAE Werte von Regressionen, welche mit GEDI Daten trainiert und
validiert werden, sind vergleichbar mit Regressionen, welche mit ALS Daten trainiert und
validiert werden. Jedoch fallen die R2-Werte der mit GEDI Daten trainierten und validierten
Regressionen im Vergleich zu allen anderen Regressionen niedriger aus. Allgemein lasst sich
beobachten, dass Regressionen welche auf GEDI Daten basieren Uber eine deutlich

begrenztere Werteskala verfligen. Modellen, welche GEDI Daten verwenden, gelingt es
1



jedoch, das Muster der horizontalen Werteverteilung aller vier Vegetationsparameter zu
reproduzieren. GEDI kann somit als angemessene Option bei der Erfassung und Modellierung

von Vegetationsparametern in unzuganglichen und anspruchsvollen Gebieten gewertet
werden.
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1. Introduction

Forests can be referred to as ecosystems with global importance due to the various functions
they fulfil. They are present in nearly all climate zones from tropical to boreal and montane
regions and include riparian and coastal mangrove forests (Huete 2012, 513). 31% of dry land
is forested, which amounts to 4.06 billion ha in total. A loss of 178 million ha of forest has been
documented since 1990, with the highest annual rate of net forest loss in 2010 to 2020
happening in Africa, followed by South America (FAO 2020, XI). Forests are mentioned within
the Sustainable Development Goals (SDGs) in relation to sustainable production and
consumption, poverty alleviation, food security, biodiversity conservation and climate change.
This is, because they significantly contribute to food security and livelihoods by providing many
products and ecosystem services (FAO 2020, 13). The range of products from forests
encompass timber, food, fodder, medicinal products, and fuelwood (FAO 2020, 109). It is
estimated that most rural households in developing countries, and a large percentage of urban
households, rely on forest products to meet some part of their food, nutritional, health and
livelihood needs (Arnold et al. 2011, 259). Of the 115 leading food crops globally — representing
35% of global food production in total — ca. 75% benefit from pollination by animals, of which
many inhabit woodlands (FAO 2022, 29). More than half of the world’s terrestrial taxa can be
found within forests. Furthermore, forest habitats have the highest species diversity for many
taxonomic groups including birds, invertebrates, and microbes (Lindenmayer et al. 2006, 434).
Besides being a cradle for biological diversity, forests also fulfil a broad spectrum of other
ecosystem functions, such as the supply of clean water and the protection of watersheds. Most
of the world’s drinking water comes from catchments that are or would naturally be forested.
There appears to be a clear link between forests and the quality of water coming out of a
catchment. One reason for this is that most of the alternative land uses, such as agriculture,
industry, and settlement, are very likely to increase the amounts of pollutants introduced into
the water system. Another reason is the fact that forests contribute to the regulation of soil
erosion and therefore decrease the sediment load. It appears that the undisturbed forest with
its understory, leaf litter and organically enriched soil is the best land cover for minimizing
erosion by water (Dudley & Stolton 2003, 11ff.). Furthermore, forests play an important part
within the carbon cycle, emitting as well as storing CO.. It is estimated that global forests were
an average net carbon sink of -7.6 (+/-49) GtCO.e/yr over the years 2001 to 2019. This reflects
a balance between the gross carbon removals of -15.6 (+/- 49) GtCO_e/yr and gross emissions
from deforestation and other disturbances of 8.1 (+/- 2.5) GtCO2 e/yr (Harris et al. 2021, 234).
Even though 89 % of the global anthropogenic carbon emissions for the period 2012 to 2021

were caused by using fossil fuels, 11 % were still a result of land use, land-use change and
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forestry. Hereby one of the main components was deforestation (Friedlingstein et al. 2022,
4829f.).

Regarding the fact, that forests can vary considerably in their characteristics, such as species
composition, structure, and the extent of modification by humans and by non-human factors,
simply estimating the forest area is an insufficient parameter. On its own, it will not be enough
for identifying important trends and assessing progress towards a more sustainable forest
management (FAO 2020, 27). Therefore, additional variables or parameters need to be
monitored alongside the forest area. Traditional parameters for foresters to assess the current
or prospective commercial value of forest stands and to plan thinning and cutting are the tree
height, diameter at breast height (DBH) and the basal area. Complementary parameters are
tree density and age. These parameters open up the possibility to build allometric relationships
in order to estimate aboveground biomass (AGB) (Morin et al. 2019, 2). Other parameters of
interest to management are for example biodiversity indicators, net and gross primary
production (NPP/GPP) and the leaf area index (LAI) (Van Leeuwen & Nieuwenhuis 2010, 749).
Tree height in particular is a very important structural measurement, since it is linked to other
parameters like DBH, timber volume and biomass. Most of these variables can be measured
on the ground by carrying out field inventories and observations. In many countries forest
inventories are conducted on a national scale, to produce normalized and actualized data on
a regular basis. The most representative forest inventory in Austria is carried out by the Federal
Research Center for Forests (Bundesforschungszentrum fur Wald — BFW) since 1961 on
permanent test plots in periodic intervals of several years. In total the sample network is
comprised of ~11000 sample areas (BFW 2022) each one 300 m? in size. Every year a sixth
of all the sampling plots are reviewed (Hauk et al. 2016, 11). The resulting statistics provide
useful information such as changes in the national forest estate and the main tree species
distribution. However, this approach is not designed for mapping and carrying out precise
estimates at a local scale. Furthermore, in-situ measurements are slow, costly and can only
be done for small areas or on samples. To overcome the limitations and related uncertainties
of these surveys, one area of improvement would be the additional use of airborne/spaceborne
remote sensing instruments with the aim to generate better data (Morin et al. 2019, 2) and
wall-to-wall information. It enables a rapid and cost-effective monitoring and change detection
of large forest areas. This is highly relevant, since forest managers often lack accurate and up-
to-date data (Atzberger et al. 2020, 109). Remote sensing in forest resource assessment
provides three levels of information. First, the extent of the forest cover to assess its spatial
and temporal dynamics. Second, the forest type (tree species) and on the third level remote
sensing provides information about the biophysical and biochemical properties of the forest

(Boyd & Danson 2005, 1). In this respect, it presents the chance to monitor plant phenology,



logging, pest and diseases, wildfires, storm damages, droughts, and water content through
change detection (Atzberger et al. 2020, 22).

In general, there are two types of remote sensing techniques: passive and active. Passive
sensing refers to sensors that detect or measure the reflected or emitted electromagnetic
radiation from natural sources, an example is Sentinel-2. Active sensing comprises sensors
that detect reflected responses from objected irradiated from artificially generated energy
sources, such as photons in light detection and ranging (LIDAR) and microwave energy in
radio detecting and ranging (Radar) sensors (Shugart et al. 2010, 21). A typical example for
spaceborne LIiDAR is the Global Ecosystem Dynamics Investigation (GEDI) sensor and for
Radar is Sentinel-1.

Passive sensors are less sensitive to the vegetation structure, but more to the optical
properties (in visible and infrared wavelengths) and moisture (in thermal and microwave
wavelength) (Shugart et al. 2010, 21). One of the most widely used satellite products to
characterize forests based on optical properties are spectral vegetation indices (VIs), in part
to their simplicity and transparency. They provide the possibility to monitor forest states and
canopy processes. Usually, they have the scientific requirement of contrasting an absorbing
leaf spectral feature with a non-absorbing one. Primarily for the blue (470 nm) and red (670
nm) wavelengths of green leaves possess a very high absorption, whereas nearly all the Near
Infrared Radiation (NIR) is reflected and transmitted in a manner dependent on leaf type,
morphology, and cellular structure. Therefore, most VlIs will combine a chlorophyll-absorbing
spectral band in the red with a non-absorbing band in the NIR to depict canopy greenness or
area-average canopy photosynthetic activity (Huete et al. 2014, 1ff.).

Active sensors measure reflection in one direction by penetrating the vegetation canopies, and
hence are more sensitive to the arrangement of objects (structure) on their propagation
pathway (Shugart et al. 2010, 21). LiDAR is a technique that utilizes lasers, usually in the NIR
wavelengths, to actively transmit energy from a satellite or aircraft and then record the energy
reflected back to the instrument at those same wavelengths (Goetz & Dubayah 2011, 231).
The travel time of the pulse, from initiation until it returns to the sensor, provides a distance or
range from the instrument to the object (Dubayah & Drake 2000, 44). This technology provides
horizontal and vertical information at high spatial resolutions and vertical accuracies.
Therefore, LIDAR data can deliver direct information about forest attributes such as the canopy
height. This offers the opportunity to model the AGB and the canopy volume. Access to the
vertical nature of forest ecosystems also offers new opportunities for enhanced forest
monitoring, management, and planning (Lim et a. 2003, 88). Still there are several limitations
when working with LiDAR data. Airborne LIiDAR has very high operating costs. Due to the

limited flying height, covering large areas is time-consuming and expensive. While spaceborne



LiDAR is less cost intensive and covers larger areas, it often does not provide wall-to-wall
information.

The fusion of LiDAR data with multispectral data, vegetation spectral indices and Radar data
has the potential to provide cost effective wall-to-wall information about vegetation height and
structure. Furthermore, it can improve species-specific estimates of standing wood biomass,
carbon stock assessments of tree stands and carbon accumulation through forest regrowth
(Huete 2012, 5).



2. Research Questions

This thesis was conducted as part of the project GEDI-Sens a cooperation between the
University of Graz and the institute Joanneum Research Graz. The thesis focusses on the
assessment of wall-to-wall vegetation parameters by combining airborne and spaceborne
LIDAR with Sentinel-1 (S1) and Sentinel-2 (S2) data, to answer the following research
questions:

(1) Which S1 and S2 variables are best suited to estimate the vegetation parameters
aboveground biomass density (AGBD), mean and maximum vegetation height and
foliage height diversity (FHD) in combination with LIDAR data in an alpine forest?

(2) When utilizing LIiDAR data in combination with S1 and S2 data for the assessment of
wall-to-wall vegetation parameters, what qualitative differences can be detected

between spaceborne and airborne LiDAR data?



3. State of the Art

3.1. LIDAR Data for Forest Parameter Estimation

LiDAR data can be used to derive digital elevation models, but it can also be used for the
extraction of descriptive variables, related to urban or environmental mapping and forest
management (Garcia-Gutiérrez et al. 2015, 24).
LiDAR systems for forestry applications can be defined based on three characteristics:

(1) What they record: the range to the first or last return or fully digitize the return signal

(full waveform).

(2) Size of the footprint: small (a few centimeters) or large (tens of meters).

(3) Sampling rate / scanning pattern.
Most commercial LIDAR systems are low-flying, small-footprint (5 to 30 centimeters in
diameter) systems with high pulse rates (1 to 10 kHz) that record the range to the highest
reflecting surface within the footprint. These systems do not create a full image, instead using
many laser returns in close proximity to recreate a surface (Dubayah & Drake 2000, 44). Such
small-footprint airborne LIDAR, sometimes referred to as airborne laser scanning (ALS) (see
Figure 1), provide the best measurement accuracy of terrain elevation and vegetation heights,
even on sloped terrain or for dense forests (Popescu et al. 2011, 2786). However, they also
face some disadvantages concerning the mapping of forest structures. Due to their small
beam, extensive flying is required to map large areas. Another problem for the small-footprint
LiDAR is the frequent oversampling of tree crown shoulders and missing of treetops. Unless
many shots are taken, the true canopy topography must be reconstructed statistically. Further,
it is difficult to determine whether a shot has penetrated the canopy all the way to the ground,
with a system that only records first or last returns, although there are also ALS systems that
record the full waveform. As the canopy height is measured relative to the ground, accurate
height determination is difficult, if the ground cannot be reconstructed or is erroneous (Dubayah
& Drake 2000, 43).
In contrast, large-footprint systems have several advantages that help to avoid those problems.
By enlarging the footprint to at least the average crown diameter of 10- to 25-meter, laser
energy consistently reaches the ground even in dense forests. It eliminates the bias of small-
footprint sensors that may miss the tops of trees. Furthermore, by covering a larger area, it
reduces the costs of mapping large forest areas. Finally, large-footprint LIDAR systems digitize
the entire return signal, thus providing a vertical distribution of intercepted surfaces (waveform)
from the canopy to the ground (Dubayah & Drake 2000, 44). A downside is that the spatial

resolution is a lot lower compared to the airborne LiDAR data. Also, large-footprint systems



such as GEDI often only take punctual recordings, not delivering wall-to-wall data (see Figure

1).

GEDI

400 km

LVIS

10 km :: ! - ALS

?M?*A?ﬂ

5-25m Em 0.1-0.5m

Spatial sampling pattern

Figure 1: Field and LiDAR data of different scales and sampling patterns (after GEDI 2022a).

Small-footprint LIDAR sensors are mostly flown on airborne platforms, drones or operated on
the ground. Large-footprint full-waveform LIiDAR sensors are found mainly on spaceborne
platforms, but can also be installed on airborne platforms, such as NASA’s Land Vegetation,
and Ice Sensor (LVIS) (Silva et al. 2018, 1) (see Figure 1). Operating since 2017, LVIS
produces topographic maps and vertical height and structure measurements for vegetation
and ice conditions (NASA 2021). The first spaceborne LiDAR instrument for continuous global
observations of the earth was the Geoscience Laser Altimeter System (GLAS) sensor,
launched aboard the Ice Cloud and Elevation Satellite (ICESat) spacecraft in 2003. The main

task was the measurement of ice-sheet topography, but also cloud and atmospheric
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properties, and the height and thickness of radiatively important cloud layers (NASA 2003).
Following missions were the Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite
Observation (CALIPSO) in 2006, the Cloud-Aerosol Transport System (CATS-ISS) in 2015
and the Atmospheric Dynamics Mission (ADM-Aeolus) in 2018. These satellites were primarily
designed for atmospheric measurements. The ICESat-2 satellite was launched in 2018
carrying the Advanced Topographic Laser Altimeter System (ATLAS) and the Global
Positioning System Payload (GPSP) sensors. The ATLAS sensor is used to measure ice-
surface heights but can also be applied for the detection of ground under dense canopy, the
estimation of wall-to-wall AGB maps and generating vegetation cover and biomass in a dry
land ecosystem (Fouladinejad et al. 2019, 408ff.).

Even though the ATLAS sensor's measurements allow vegetation analysis, the GEDI (see
Figure 1) laser is the first spaceborne LiDAR instrument with the dedicated purpose of
collecting information on the Earth’s forests. The mission’s goal is to characterize ecosystem
structure and dynamics to enable improved quantification and understanding of the Earth’s
carbon cycle and biodiversity. Their LIDAR system has been installed on board the
International Space Station (ISS) in December 2018 and started collecting scientific data in
operational mode on March 25", 2019 (GEDI 2022b) between 51.6°N and 51.6°S. The
instrument, is a geodetic-class LIDAR system comprised of three neodymium-doped yttrium
aluminum garnet (Nd:YAG) lasers that emit light at the wavelength 1064 nm. Two of the lasers
run at full power, and one is split into two beams, producing a total of four beams. Beam
Dithering Units (BDUs) rapidly change the deflection of the outgoing laser beams by 1.5 mrad,
shifting them by 600 m on the ground. This results in eight ground tracks, four full power and
four coverage laser tracks (see Figure 2). Each pulse send out by the lasers has the power of
10 mJ and a duration of 14 ns. Meaning that each laser fires 242 times per second, illuminating
a spot, also called a footprint, on the earth’s surface over which the 3D structure is measured.
These footprints have an average diameter of 25 m and are separated by 60 m along the laser
tracks (GEDI 2022c). LVIS data in combination with insitu biomass calculations and plot field
inventory datasets were used for the calibration and validation of the GEDI LiDAR waveform

simulator and data product algorithms, such as the biomass calculation (GEDI 2022d).
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Figure 2: GEDI’s ground sampling pattern (after GEDI 2022c)

3.2. Combining LIDAR Data with Multispectral and Radar Imagery

LiDAR can provide almost direct measurements of the tree height and the vertical forest
structure (Lewis & Hancock 2007, 36). A limitation is often the availability of the data. The
recording of airborne LIiDAR is expensive and time consuming, therefore mostly done for small
local areas. Also, due to this there are often large time gaps of several years between different
recordings of the same area. Spaceborne LIiDAR such as GEDI or ICESat-2 makes it possible
to record information on a global level for shorter time intervals. But they do not provide wall-
to-wall data (see chapter 3.1.). The combination of LiDAR with multispectral or radar imagery
such as Sentinel or Landsat offers the possibility to translate punctual LiDAR recordings into
wall-to-wall data.

The application of LIDAR data together with other satellite imagery to achieve a more complete
picture on vegetation parameters has been around for a long time. Leckie (1990, 477) already
suggested the fusion of airborne laser data with multispectral sensors in 1990. Hudak et al.
published a study in 2002 describing how they estimated canopy height at locations unsampled
by LIDAR, through the statistical and geostatistical relationships between airborne LiDAR data
(Aeroscan) and Landsat Enhanced Thematic Mapper (ETM+).

As already mentioned, there are different sources providing LiDAR data. Pascual et al. (2010)
tried to extrapolate airborne LIiDAR height measurements across a broader landscape by
combining them with Landsat 8 data. While Li et al. (2020) mapped the spatial pattern of the

forest canopy height in a mountainous region utilizing ICESat-2 data in combination with S1,
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S2 and Landsat 8 data. Verhelst et al. (2021) combined the GEDI Forest Height data and
Sentinel-1 C-band GRD data acquired in both vertical-vertical (VV) and vertical-horizontal (VH)
polarisation to create a remote sensing-based Forest/Non-Forest (FNF) mask. Even very
accurate height differentiations based on GEDI data are possible, as demonstrated in the study
of Di Tommaso et al. (2021). Hereby tall and short crops were meant to be mapped by
combining GEDI L2A Elevation and Height Metrics data and S2 Level-2A data. The results
show that GEDI data can distinguish tall crops (maize) from small crops with accuracies higher
than 84%. Also, the random forest (RF) models trained on GEDI features (accuracy 82%) can
be transferred much better than RF models trained on optical features (accuracy 64%) across
regions spanning multiple continents. Furthermore, the study proofed, that GEDI data can
generate training labels, that then enable wall-to-wall crop type mapping with optical imagery
in the absence of other ground labels. But LiDAR not only provides information about the tree
heights and therefore the canopy structure. A single equation for example can be used to relate
the canopy structure to the above-ground biomass (Lefsky et al. 2002, 398). Zald et al. (2016)
conducted a study predicting the forest structure and the AGB based on airborne LiDAR plots
combined with Tasseled Cap indices and multi-temporal change metrics derived from Landsat
TM/ETM based image composites. Vegetation parameters that were measured from LiDAR
and used for the predictions were; the mean vegetation height (m), the standard deviation of
vegetation height (m), the coefficient of variation of vegetation height (m), the 95" percentile
of vegetation height (m), the percentage of first returns above 2m (%), the percentage of first
returns above mean vegetation height (%), Lorey’s tree height (m), basal area (m?/ha), gross
stem volume (m%ha) and the total aboveground biomass (kg/ha). Nandy et al. (2021)
conducted a study aiming to map the forest canopy height by integrating ICESat-2 and
Sentinel-1 data. Based on their results they investigate the effect of integrating forest canopy
height information with Sentinel-2 Level 2A data-derived spectral variables on the prediction
of spatial distribution of forest AGB.

A variation of variables can be used to predict the vegetation parameters. Li et al. (2020), as
well as Nandy et al. (2021) and Vehelst et al. (2021) utilized the S1 backscattering coefficients
for the VV and VH polarisation. Furthermore, texture features calculated from S1 imagery, such
as mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment and
correlation can be employed (Nandy et al. 2021, Vehelst et al. 2021). One way to compute
them is utilizing a gray level co-occurrence matrix (GLCM). The GLCM is one of the earliest
techniques used for texture feature extraction and was proposed back in 1973 by Haralick et
al. It is a square matrix G of order N, where the (i, j)" entry of G represents how often a pixel
value known as the reference pixel with the intensity value / occurs in a specific relationship to
a pixel value known as the neighbor pixel with the intensity value j. This method can reveal

certain properties about the spatial distribution of the gray-levels in the texture image (Pathak
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& Barooah 2013, 4207). The GLCM, combined with the original radar image, is one of the
most trustworthy methods for improving the mapping accuracy for vegetation. GaSparovi¢ and
Dobrini¢ (2020, 16) have found, that including the GLCM texture bands in their vegetation
classifications, increased the overall accuracy by 19.38% compared to the classifications only
using the VV and VH polarisation band.

Other variables are spectral bands as well as Vls derived from the multispectral imagery. One
Vis that is very often employed is the normalized difference vegetation index (NDVI). A
variation of this, when working with S2 data, can be the vegetation red edge NDVI utilized by
Nandy et al. (2021), Li et al. (2020) or Chen et al. (2021). Further spectral variables found in
other studies were the EVI and MSAVI in Li et al. (2020) or the CI, DVI, GNDVI, IRECI, MSI,
NSII, NDWI, PSRI, RDVI, SAVI and STVI in Nandy et al. 2021).

Furthermore, one can achieve more complete data for the predictor variables by aggregating
the imagery to spatiotemporal composites. Vehelst et al. (2021) calculated the temporal
metrics (mean, median, minimum, maximum, 5" percentile, 95" percentile) for the S1
backscatter. Potapov et al. (2021) used global Landsat data to extrapolate GEDI footprint-level
forest canopy height measurements and created a 30 m spatial resolution global forest canopy
height map for the year 2019. The Landsat data was aggregated into 16-day composites using
the observation quality layer to prioritize clear-sky images. Each of the 16 composites contains
normalized surface reflectance values for blue, green, red, NIR, SWIR, brightness
temperature, and the observation quality layer. A per-pixel machine-learning algorithm
(regression tree) was used to predict forest height values from spatiotemporal multispectral
Landsat data. The results were later on validated with the GEDI data and available airborne
LiDAR data.

Furthermore, the quality of the estimated vegetation parameter values depends on the
correlation of the input variables with the desired parameter. Pascual et al. (2010) used three
Landsat ETM+ scenes. For each one several spectral indices were calculated; the NDVI, the
normalized difference moisture index (NDMI) and the normalized burn ratio (NBR). Pearson
and Spearman correlations were then calculated between the Landsat spectral indices and the
LiDAR height measurements. Resulting in correlation coefficients R ranging from 0.64 to 0.73,
0.67 to 0.75 and 0.08 to 0.76 respectively. In the study by Chen et al. (2021) the forest stand
volume is estimated by integrating the canopy cover and tree height values from GEDI Level
2B together with S1 Synthetic Aperture Radar (SAR), S2 Multispectral Instrument (MSI), and
Advanced Land Observing Satellite (ALOS) digital surface model (DSM) imagery into a RF
model. 53 remote sensing indices for volume extraction were selected in total, with 22, 26 and
5 indicators from SAR, MSI and DSM respectively. By carrying out a Pearson correlation
analysis, 45 were found out to have a significant relationship with the stand volume and were

selected as predictor variables. Comprising 16 variables from SAR, 25 from MSI and 4 from
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DSM. For the SAR parameters the VV backscatters had positive correlations with the
measured volume, but the overall influence of backscatter on stand volume mapping was
marginal. Among 10 kinds of texture features from SAR, the GLCM mean of VV and contrast
of VH were most related to the stand volume. The correlation analysis demonstrated that the
texture characteristics of SAR imagery were much more beneficial to the volume estimation
than the original backscatter. The study also concluded that the texture features from VV were
more relevant to volume than those from VH. Of the 25 MSI predictor variables, B2, B3, B4,
B5, B11, B12, TCW, and TWB were negatively related to volume, while the remaining 17
variables showed a positive correlation. Reflectance and spectral indices involved in featured
red edge bands of S2 demonstrated a close connection to the measured volume. Overall MSI
presented more sensitive variables for volume estimation than C band SAR. The DSM-based
topographic indicators all had a strong positive influence on the growth of measured volume,
except the SPI. The most important variables for volume modelling were H, S2REP, B12, PVI
and S. In heterogeneous temperate forests canopy cover and tree height from LiDAR,
topographic indices from L band in SAR, and spectral indices of red edge band from MSI are
recommended for stand volume estimation. All in all, the VV texture characteristics of SAR,
reflectance and spectral indices from MSI and DSM-derived elevation were comparatively

important for volume mapping.

3.3. Vegetation Parameters

3.3.1. Vegetation Height

Tree height in particular is a very important structural measurement, since it is linked to other
parameters like DBH, timber volume and biomass. It is also among the top thirty variables to
monitor biodiversity from space, due to its capacity to provide information about the ecosystem
structure (Skidmore et al. 2021, 901). Furthermore, the forest canopy height is a meaningful
measurement concerning the forest vertical structure, that can be used to model the forest
biomass (Hurtt et al. 2019, 5). It can be expected that the three-dimensional arrangement of
individual trees has a profound effect on the ecosystem function and the carbon, water and
nutrients cycle. The structure of a forest can be thought of as consequence of the statistical
distribution of the sizes of trees over an area. Tree size is typically quantified as a DBH and its
canopy or stem height. While tree height is a central feature in forestry yield tables for single
species and even-aged forests, the predictive power of height can become weaker in mature
or old-growth forests. In many cases, dominant trees do not show any noteworthy height
growth and height may even decline in senescing but still dominant canopy trees. However,

diameters continue to increase, adding to the biomass of trees (Shugart et al. 2010, 1ff.). Also,
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the ability of height metrics form LiDAR data to estimate herbaceous biomass is limited (Li et
al. 2017, 1).

3.3.2. Aboveground Biomass

Using allometric relationships between tree height and the crown diameter the volume or AGB
can be predicted (Franklin 2001, 268). The AGB stands for the total mass of foliage and woody
components of a vegetation canopy above the ground level. Normally 50% of the AGB is
carbon, therefore AGB is also often referred to as aboveground carbon stock. Approximately
44 % of carbon within forests is found in the living biomass, 45 % is stored in the organic matter
of the soil and the remaining carbon can be found in dead wood and litter (FAO 2020, XV).
Even though the carbon pools of AGB can differ tremendously from those accumulated over
much longer time periods in the underlying soils, the AGB is primarily impacted by
disturbances, for example deforestation. Thus, it is an important variable concerning the
reduction of emissions from land conversation (Goetz & Dubaya 2011, 233). Because of this
the AGB has been identified by the Global Climate Observing System (GCOS) as one of the
essential climate variables (ECVs) (Morin et al. 2019, 2). The carbon stocks of intact forests
are more resilient to change than those in degraded or fragmented forests (Hicks et al. 2014,

V).

3.3.3. Foliage Height Diversity

One important task for forestry is the conservation of biodiversity. Notably the vegetation
structure has a strong local effect on this aspect, indicating that there is a relationship between
the vegetations vertical complexity and biodiversity. One general hypothesis states that greater
structural complexity creates more “niches” and therefore greater species diversity (Bergen et
al. 2009, 2). To explain both the density and height distribution of foliage in a vegetation profile
MacArthur & MacArthur introduced the FHD statistic in 1961 with following equation.

Equation 1: Foliage Height Diversity equation (MacArthur & MacArthur 1961, 594)

FHD = —=Xip;" In(p;)

P:: vertical plant area index (PAI) profile in the i*" layer, summed over the number of layers

(MacArthur & MacArthur 1961, 594)
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It can be said that “the more equal the proportion of vegetation coverage at every height, the
higher the FHD value” (Hashimoto et al. 2004, 255) or “higher FHD values [are] often

associated with multiple canopy layers” (Rishmawi et al. 2021, 442).

3.4. Correlation

The correlation analysis is concerned with measuring the strength of the relationship between
variables. In contrast to regression analysis, correlation analysis does not require a distinction
between a dependent and an independent variable (Bahrenberg et al. 2010, 197).

The mutual dependency of the two variables is questioned, and the result should allow a
statement to be made about the strength and direction of the connection. The starting point for
the correlation measurement is the covariance, which is normalized to produce the Bravais-

Pearson correlation coefficient. The formula is as follows:

Equation 2: Bravais-Pearson correlation coefficient equation

. n(Xxy) — Cx)Xy)
J(Zx? — (Tx)2)(nZy? — (Zy)?)

n = number of values
X = x column

y =y column

(Emerson 2015, 242)

The correlation coefficient (R) according to Bravais-Pearson has - as normalized covariance —

values between -1 and +1. They can be interpreted as following:
+1 if fully positive
-1 if fully negative

0 if there is no correlation.

Values located between the two extremes -1 and +1 can be interpreted by using the guide,

that Evans (1996) suggested for the absolute values of R (see Table 1).
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Table 1: R value guide according to Evans (1996)

R value guide
| Rvalue | Interpretation

.00-.19 very weak
.20-.39 weak

.40 - .59 moderate
.60 -.79 strong
.80-1.0 very strong

Note that R measures the strength of the linear relationship. It is a measure that indicates
whether and to what extent an imaginary straight line fits a point cloud (Zwerenz 2015, 214f.).
While R is a measure of the relationship between two variables, the coefficient of determination
R? (also called the multiple correlation coefficient) tells you how much variance is “explained”
by the regression (Nagelkerke 1991, 691). It is therefore a measure of the goodness-of-fit of
the statistical model, since it provides information about how well the straight line formed by
the correlation corresponds to the measurements. It is calculated simply by squaring R. The
determination coefficient is therefore always positive and assumes values between 0 and 1.
These values are commonly stated as percentages from 0% to 100%. A R? close to 1 implies
an almost perfect relationship between the model and the data, whereas a R? close to 0 implies
that just fitting the mean is equivalent to the model fitted. But there are no set criteria what
universally represents a “good” R? value. It is only possible to assess such a statistic via

comparison with another predictive model (Saunders et al. 2012, 6830).

3.5. Random Forest

Complex ecological data requires flexible and robust analytical methods, which can deal with
nonlinear relationships, high-order interactions, and missing values. Garcia-Gutiérrez et al.
(2015) compared several machine learning regression techniques for LiDAR-derived
estimation of forest variables. Techniques they investigated were the classic multiple linear
regression (MLR) methodology, artificial neural networks, support vector machines, nearest
neighbour, and RF. The study concluded that the Support Vector Regression was statistically
the most precise technique. Debastiani et al. (2019) also compared several machine-learning
algorithms when evaluating the potential of C-band SAR data to estimate the AGBD in a high-
biomass tropical ecosystem. These included multilayer perceptron, sequential minimal
optimization regressor (SMOreg), robust regression, decision stump, RF, random tree,
reduced error pruning tree (REP tree), M5Prime (M5P), instance-based k-nearest neighbors

(IBk), K* instance-based learner (Kstar) and locally weighted learning (LWL). The best model
15



performance was achieved with the Random Tree algorithm. Other studies such as Hudak et
al. (2008), Eskelson et al. (2009) and Vauhkonen et al. (2010) demonstrated that the RF
approach generally resulted in better predictions compared to other imputation methods, when
estimating plot-level stand volume, basal area and tree height. Latifi et al. (2010) and Stojanova
et al. (2010) also demonstrated how ensembles such as RF could be used for biomass
estimation, surpassing the classical stepwise regression.

The RF method is an extension of the classification and regression tree (CART) methods.
Trees are able to explain the variation of a single response variable by repeatedly splitting the
data into more homogenous groups, using combinations of explanatory variables that may be
categorical (classification) and/or numeric (regression) (Breiman 2001, 5). Decision trees are
reliable, simple models, that have the advantage of being able to work with a broad range of
response types, can overcome missing values in explanatory and response variables and can
deal with multi-output variables. To its disadvantage even small variations in the data can result
in a different tree and the model can be prone to overfitting (Pekel 2020, 1113). To avoid these
effects, RF grows and combines multiple decision trees to create a forest. The procedure used
to create multiple versions of a predictor and use these to generate an aggregated predictor is
called “bootstrap aggregating” or bagging (see Figure 3). The bootstrap method randomly
performs row sampling and feature sampling from the dataset to form sample datasets for
every model. The aggregation averages over the versions when predicting a numerical

outcome and does a plurality vote when predicting a class (Breiman 1996, 123).
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Figure 3: Random Tree Regression (according to Misra et al. (2019), Khan et al. (2021) and Galv&o et al. (2020))
16




4. Study Area

To answer the research questions above, a part of the National Park Kalkalpen was selected
as study area. The main reason for selecting this study area was to observe the quality of the
assessment of vegetation parameters through the combination of LIDAR and Sentinel data in
difficult mountainous terrain. The study area has a diverse and small structured topography,
opening up the possibility to compare the goodness of GEDI compared to ALS in a complex
terrain. It is characterized by steep slopes and a wide elevation amplitude. A height difference
of 1260 m is covered, with the lowest elevation point at 524 m a.s.l. and the highest elevation
point at 1784 m a.s.l.,, amounting to a median elevation of 1125 m a.s.l. Furthermore, an
inclination of 0 to roughly 85° is covered, with the median inclination being 32° (see Figure 4).
The National Park offers an extensive closed temperate montane forest area including old-
growth beech forests, which are an approved UNESCO World Natural Heritage Site (see
below). According to the CORINE Land Cover data from 2018 the research area consists to
19% out of broad-leaved forest, 27% are coniferous forest and mixed forest amounts to the
biggest land cover class with 38%. The rest is covered with natural grasslands, moors and
heathland (“alpine woodland”), transitional woodland-shrub and sparsely vegetated areas (see
Figure 5). The available high resolution wall-to-wall ALS data from the year 2018 covers the
center of the National Park and its extent determines the study area, which ultimately covers
~ 56 km?. The area stretches from the peaks Hochsattel (1199m a.s.l), Brandleck (1725m
a.s.l), Mayrwipfl (1736m a.s.l), Steyreck (1592m a.s.l) and the alpine pasture Blumauer AIm in
the west to the peaks Falkenmauer (1294m a.s.l), Schwarzkogel (1333m a.s.l) and the stream
GrofRer Bach in the east. Also, it includes the peaks Rotwagmauer (1191m a.s.l), Trampl
(1424m a.s.l), Alpstein (1443 m a.s.l) and the alpine pasture Schaumbergalm in the north and
the peaks Durreneck (1271m a.s.l) and Hundseck (1259m a.s.l) in the south.
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25%

19%
20% 17%
15%
15%
0,
11% 10%
10% 7%
0,
5% >% o 3%
’ 1% 2% _ 2% 1% 0% 0% 0% 0%
(]
0% | _|_|_| (+] (] (+]

L e P L LR A
S I O S I S AN
slope gradient (°)

Figure 4: Distribution of the slope gradient (°) in percent across the study area
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4.1. The National Park Kalkalpen

The National Park Kalkalpen was founded in the year 1997 on the 25" of July by the federal
and state governments of Upper Austria covering an initial area of 16509 ha. During its
existence the Park was constantly expanded and possesses now an area of 20856 ha
(Nationalpark O. 6. Kalkalpen GmbH 2011a). 89% of the parks area are classified as nature
zone, while 11% are defined as preservative zone. The area is divided into 81% forest, 8%
coniferous shrub, 6% meadows and 5% rock and debris (Nationalpark O. 6. Kalkalpen GmbH
2011b). The Kalkalpen National Park is part of the Northern Limestone Alps. It is made up of
two mountain ranges, the Reichraminger Hintergebirge and the Sengsengebirge. The
Sengsengebirge, an outpost of the alpine Limestone Alps, with its approximately 20 kilometers
long main ridge, reaches its highest elevation with the mountain Hoher Nock (1963 meters).
The lowest point of the park, with 385 meters is located in the northern Reichraminger
Hintergebirge (Nationalpark O. 6. Kalkalpen GmbH 2016, 18).

Of the six Austrian National Parks, the Kalkalpen National Park is described as the Forest
National Park. It is one of the largest closed forest areas in Austria, that has been spared from
fragmentation by traffic routes and settlements to this day (Nationalpark O. 6. Kalkalpen GmbH
2016, 18). A high biodiversity of tree species can be found, all in all 32 different species. For
example: spruce, fir, larch, pine, beech, sycamore, rowan, etc. (Nationalpark O. 8. Kalkalpen
GmbH 2011c¢), whereby the most prevalent tree species are fir with 44,5% and beech with
38,2% (Nationalpark O. 6. Kalkalpen GmbH 2020, 31). The most common forest type is the
beech forest and the spruce-fir-beech forest (Nationalpark O. 6. Kalkalpen GmbH 2011d).
Overall, 6 different beech forest communities are present in the protected region. This includes
the Cyclamen beech forest, the Winter roses beech forest, the Woodruff beech forest, the
Carbonate-Adenostyles-Spruce-Fir beech forest, the Loam-Spruce-Fir beech forest and the
high montane-Carbonate beech forest. Especially notable is the Winter roses beech forest,
or Helleboro nigri-Fagetum, which can be described as an endemic community for the north-
eastern Limestone Alps (UNESCO). A quarter of the forests are older than 140 years, of these,
23% are older than 200 years and 5% are even older than 250 years. The oldest known beech
in the National Park counts 548 years (Nationalpark O. 6. Kalkalpen GmbH 2022).

In the year 2017, 5250 ha of the beech forest in the Nationalpark Kalkalpen were declared part
of the United Nations Educational, Scientific and Cultural Organization (UNESCO) world
natural heritage site “Ancient and primeval beech forests of the Carpathians and other regions
of Europe” together with the wilderness area Durrenstein, whereby 246 ha of these 5250 ha
are pristine primeval forest (Egelseer 2021, 27). The integrity of the UNESCO World Natural
Heritage site in the Nationalpark Kalkalpen is proven by the closeness of the forests to nature,

as 26% of the forests can be described as natural and 50% as near natural. Another important
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aspect is the size of the nominated area. The National Park Kalkalpen is the largest connected
protected area with a significantly high proportion of old beech stocks in the beech distribution
area of the Alps (UNESCO). Up until now the National Park Kalkalpen and wilderness area
Durrenstein remain the only world natural heritage site within Austria (Egelseer 2021, 27).

An important aspect in protecting the European beech (Fagus sylvatica L.) is its endemic status
within Europe. They can reach an average height of 20 to 35 m, with a maximum height of
about 45 m. The maximum age is given at 200 to 300 years, with exceptional cases sometimes
reaching an age of over 500 years. Concerning the soil trophy, vertical distribution and water
balance the European beech is adapted to a very wide spectrum (Nationalpark O. 6. Kalkalpen
GmbH 2016, 39). With its dense foliage and canopy shape the beech forest deeply influences
the internal forest climate, by reducing the amount of light reaching the forest interior, and
conditioning the soil formation, the regeneration cycles and the food chains. Within Europe this
forest type plays a significant role in the maintenance of biodiversity, as they can offer a habitat
for up to 10,000 different species. They are therefore among the most valuable terrestrial
ecosystems in Europe (Jovanovic¢ et al. 2019, 16). Under natural conditions beech forests
would be omnipresent in Central Europe. But due to the historical land development they had
to give way to the land requirements for agriculture, industry and settlement activities. In
Austria 12.3% of the forest area would be beech forest, while 29.6% would be spruce-fir-beech
forest. However, forest inventories showed, that only 28% of potential beech forest habitat is
covered with beech trees. Within Europe primeval beech forests have become very rare and
inside Austria they only constitute to 0.7% of the forest area, which amounts to ~28138 ha
(Nationalpark O. 6. Kalkalpen GmbH 2016, 43). Characteristic for an undisturbed beech forest
is the uneven age structure, representing all development phases, from seedling to very old,
senescent trees. This vertical diversification leads to the gap dynamics regeneration, where
the mortality of canopy trees is prerequisite for the regeneration of beech. Together with dead
wood, these gap dynamics create a complex, multi-layered stand structure, with natural
species composition and ecological processes. Already the importance of preserving these

forests for biodiversity conservation is well recognized (Jovanovic et al. 2019, 17).
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5. Data

Following the introductory remarks, different datasets are used to answer the research
questions. As per definition, airborne and space-born LiDAR data are used in conjunction with
wall-to-wall active and passive satellite data. Due to their availability and variations in quality
the data used, is obtained from different years:

o ALS data acquired in 2018.

e GEDI data from 2019/2020.

e S1 Radar data from 2020.

e S2 optical satellite data from 2019.

5.1. LIiDAR

For this study data based on small-footprint ALS and large-footprint GEDI was used. The
AGBD values were solely based on the GEDI data, while the vegetation height and the FHD
values were based on the ALS, as well as the GEDI data. Both datasets are explained in detail

below.

5.1.1. ALS

The ALS data was acquired on the 215t of May 2018 using an ultra-light airplane at a cruising
altitude of ~790 m above ground. The sensor is a RIEGL VQ580 with a point density of > 16
points/m?. Additionally, approximately 4000 ha are covered by 50 flight lines. Direct
georeferencing is done for ALS by using the GPS/IMU unit Navatel SPAN-FSAS (NovAtel Inc.
2016). Afterwards, the resulting data was existing data from a region-wide previous ALS
campaign to ensure location accuracy. Based on the georeferenced point cloud, both a digital
terrain model (DTM) as well as a DSM were processed at a resolution of 0.5 x 0.5 m per pixel.
To determine the vegetation height above the mapped terrain surface, the DTM is subtracted
from the DSM (Eysn et al. 2012, 767). The difference between the DTM and the DSM is known
as the Canopy Height Model (CHM) or the normalized Digital Surface Model (nDSM) (Chen et
al. 2006, 925). After the nDSM is calculated, outliers must be sorted out. All values that are
less than O or greater than 50 are excluded. The latter value was chosen, because both beech
and spruce can reach a maximum height between 40 to 50m (IVA 2016) and are the dominant

tree species in the National Park Kalkalpen. Furthermore, the point density at the edges of the
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study area was too low to generate reliable canopy height values, therefore these border areas

were removed from the analysis.

5.1.2. GEDI

For this study the relative height (RH) metrics from GEDI Level 2A, the FHD based on the plant
area index (PAI) from GEDI Level 2B and the AGBD from GEDI Level 4A were used.

The GEDI Level 2A Geolocated Elevation and Height Metrics product provides waveform
interpretation and extracted products from each GEDI Level 1B received waveform. This
includes the ground elevation, the canopy top height and the RH metrics. The methodology for
generating these datasets is adapted from the LVIS algorithm (Dubayah et al. 2021a). This
study uses the RH50 and the RH100 values representative for the mean and the maximum
canopy height. Relative heights are defined as the distance between the elevations of detected
ground return and the n% accumulated waveform energy, where n ranges from 1 to 100 (Wang
et al. 2022, 975). RH100 for example stands for the relative height difference between the first
and last mode, where the LiDAR pulse was reflected (Rishmawi et al. 2021, 4).

The GEDI Level 2B Canopy Cover and Vertical Profile Metrics product contains the canopy
cover, the PAI, the Plant Area Volume Density (PAVD), and the FHD (Dubayah et al. 2021b).
The FHD is a measurement for the complexity of the canopy structure. Higher FHD values are
often associated with multiple canopy layers (Rishmawi et al. 2021, 5). It is hypothesized, that
a greater structural complexity creates more niches and thus greater species diversity (Bergen
et al. 2009, 2).

The GEDI Level 4A Footprint level AGBD product is the highest product level and represents
the output of models. The vertical height profiles, derived from the L2A data waveform RH
metrics, are put in relation to AGBD estimations from field inventories. These models are
applied to the billions of GEDI profiles. Globally consistent measurements and algorithms help
to overcome the uncertainties imposed by incomplete sampling and the use of different data
sources and methods in different parts of the world (Dubayah et al. 2022).

The lower-level products (L2A & L2B) are received from NASA’s Land Processes Distributed
Active Archive Center (LPDAAC) and the higher level product (L4A) from the Oak Ridge
National Laboratory Distributed Active Archive Center (ORNL DAAC).
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5.2. Sentinel

S1 and S2 are the satellites of the European Space Agency (ESA), designed to deliver dense
time series data and imagery for Europe’s ambitious Earth Observation program Copernicus.

S1 is an active Radar sensor, while S2 is an optical sensor covering 13 multispectral bands.

5.2.1. Sentinel-1

S1 is installed on two twin polar orbiting satellites, descending (DSC) and ascending (ASC),
that are designed to provide spatial data for environment and security warranting, global
economic and business growth. S1A was launched on the 3™ of April 2014 and S1B on the
25™ of April 2016 (ESAa). Each satellite has a 12-day repeat cycle and 175 orbits per cycle.
With both satellites operating, the repeat cycle is reduced to six days (ESAb). However, there
was an anomaly of the power supply reported for S1B on the 23 of December 2021. After
several investigations, on August the 3™, 2022, ESA announced that efforts to repair the failed
C-band SAR sensor onboard the S1B satellite have not been successful, and the mission has
therefore been terminated. This failure however did not affect the study.

The SAR instrument is the main instrument carried by the S1 spacecrafts (Bourbigot et al.
2016, 22). It is a type of active data collection, where a sensor produces its own energy and
then records the amount of that energy reflected back after interacting with the earth. This
allows S1 to collect imagery in all weather conditions and to operate day-and-night. Different
wavelengths of SAR are categorized as bands, with letter designations such as X, C, L or P
(Chan & Koo 2008, 28ff.) S1 operates in the C-Band with a frequency of 5.405 GHz a
wavelength of 7.5 to 3.8 cm. The instrument supports operations in single polarisation (HH or
VV) and dual polarisation (HH+HV or VV+VH). Whereby HH or VV means, that the signal
transmits and receives in vertical or horizontal polarisation and VH for example means, that
the signal transmits in vertical polarisation and receives in horizontal polarisation (Bourbigot et
al. 2016, 22f.).

All available S1 images recorded in the year 2020 were used in this study. The earliest
recording from the 2" of January and the latest recording on the 215t of December. Images
from four different orbits, two descending, two ascending, were selected. For each orbit the
polarisation VV and VH was used. The orbit ASC146 provided 29 images, 28 images were
available for ASC44, 33 images for DSC22 and 57 images for DSC95, which resulted in 147

images in total.
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5.2.2. Sentinel-2

S2 sensors are installed on two identical satellites in the same orbit. S2A was launched on the
23 of June 2015 and S2B was launched on the 71" of March 2017 (ESAc). Each satellite
carries an innovative wide swath high-resolution multispectral imager with 13 spectral bands,
an orbital swath width of 290 km and a revisit frequency of 5 days. The 13 spectral bands cover
the visible, NIR and SWIR spectrum at different spatial resolutions at the ground ranging from
10 to 60 m (Drusch et al. 2012, 26).

This study uses S2A data and 10 of the available 13 bands (see Table 2). The 60 m bands
(Band 1, Band 9, Band 10) were discarded. Due to difficult illumination and snow cover in
winter, only images from the vegetation period (in this case between the 1 of June and the
30" of September) were used. All 24 images were recorded in the year 2019 with the earliest
recording available on the 3™ of June 2019 and the latest recording on the 215 of September
2019. S2 data would also have been available for the year 2020, but of the 24 images recorded
in the vegetation period 17 of the images had a cloud cover of more than 50%. Three so
“severe”, that the images were not available at all. The images of 2019 on the other hand only
had a cloud cover over 50% for 13 of its available images. Therefore, the images from 2019

were selected, to provide a greater dataset.

Table 2: Sentinel-2A bands used for the study (ESAQ)
Slngle Bands Sentinel-2A

Band Abbrevation Band Name Sensor Central wavelength Bandwidth Resolution
Number (nm) (nm) (m)

Band 2 Blue 492.7

Band 3 Green MSI 559.8

Band 4 B4 Red MSI 664.6 30 10
Band 5 B5 Vegetation Red Edge MSI 704.1 14 20
Band 6 B6 Vegetation Red Edge MSI 740.5 14 20
Band 7 B7 Vegetation Red Edge MSI 782.8 19 20
Band 8 B8 NIR MSI 832.8 105 10
Band 8a B8a Narrow NIR MSI 864.7 21 20
Band 11 B11 SWIR-Cirrus MSI 1613.7 90 20
Band 12 B12 SWIR MSI 2202.4 184 20

5.3. Reference Data

The ALS and GEDI data was utilized as reference data to train the RF model and to validate
the regression results. Also, our results were compared to available forest inventory data (see
chapter 5.3.1) and collected field data (see chapter 5.3.2). Furthermore, the influence of the
study area characteristics was investigated. Hereby, the focus was on the slope inclination,

the forest type and the canopy cover. The slope inclination is calculated, utilizing the acquired
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DTM (NovAtel Inc. 2016). The forest type is based on the Dominant Leaf Type (DLT) (EEA
2020a) and the canopy cover on the Tree Cover Density (TCD) (EEA 2020b) of Copernicus.

Both are available for the year 2018 with the resolution 10x10 m.

5.3.1. Forest Inventory Data

Zdbelboden covers a small, forested catchment (90 ha) of a karstic mountain range in the
Northeast of the National Park Kalkalpen. It was established in 1992 as the only Integrated
Monitoring station in Austria under the UN Convention on long-range transboundary air
pollution and in 2006 it became part of the Long-Term Ecosystem Research (LTER) Austria.
Monitoring and research are focusing on climate change effects on forest ecosystems, etc.
(EAA 2022).

Data for the AGBD in g/m? was available for the year 2019 for the station 700 located in the
sample area Intensive Plot 2 and station 2900 located in the sample area Intensive Plot 3. Both
plots are located outside the study area (see Figure 6). Therefore, a comparison of the forest
inventory measurements with the original ALS and GEDI data is not possible and only a
comparison with the regression results is carried out. For each plot the available AGB
measurements for each tree were transformed from g/m? to Mg/ha by multiplying the values
with 100 and then summed up. Station 700 includes mostly beech trees, but also Norway
spruce and could be, according to its tree composition, categorized as mixed forest. Station
2900 largely consists of Norway spruce and can therefore be labeled as coniferous forest. In
total Station 700 can count 64 measured trees, on which the measured AGBD of 287.74 Mg/ha
is based. Station 2900 contains a total number of 53 trees and an AGBD of 414.23 Mg/ha (see
Table 3).
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Figure 6: Field Inventory Data. Location of Station 700 and 2900

Table 3: Tree type distribution and AGBD (Mg/ha) values for station 700 and 2900

Statlon 700 Statlon 2900
beech 225.95 beech 1 20.64
norway spruce 14 33.86 european larch 6 86.65
sycamore 7 26.37 norway spruce 46 306.94
whitebeam 1 1.56 53 414.23

64 287.74
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5.3.2. Field Data

On the 20" of June 2022 several GEDI plots used for this study were visually addressed and
documented via photography. The plots were selected according to their reachability (see
Figure 7) and distributed from a height of 643 m up to 1249 m a.s.l. The slope gradient ranged
from 17° to 42°. Several diverse forest types were covered in the field data plots for example:
old growth forest; mixed forest; coniferous forest and broadleaved forest. The recordings of
the plots and the associated ALS and GEDI values are given in Table 28. The main focus of

the inspection was the inquiry of the type and the vertical structure of the forest.
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Figure 7: Field data plot distribution
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6. Methods

6.1. Data Preprocessing

6.1.1. Removing Areas of Change and Subalpine Zones

As mentioned in chapter 5 the input data was recorded in different years. To avoid
miscorrelations, changed areas had to be discarded from the analysis. Changes in the forest
structure between 2019 and 2020 were visually detected, based on orthophotos from the year
2018 as reference data and World Imagery data available in ArcMap and ArcGIS Pro from the
years 2019 and 2020. The change area amounted to 9.65 ha in total and was often the result
of windbreak or bark beetle infestation. These change areas were later used to filter out GEDI

plots, but also fishnet grids based on the ALS data.

Additionally, with the highest elevation point reaching 1784 m a.s.l., parts of the study area are
located within the higher subalpine zone. This zone is characterized by loose groups of pine
(Pinus cembra) and larch (Larix decidua) and shrublike mountain pine (Pinus mugo) (Kilian et
al. 1994, 11). Differentiating between the coniferous shrub and the coniferous trees based
alone on their spectral properties presents a challenge, due to similar morphological and
anatomical needle characteristics (Rosch et al. 2022, 5). When modelling the vegetation
parameters, large errors within these regions can therefore be expected. This was found in
earlier calculations and therefore the higher subalpine zone was excluded from all calculations.
Depending on the alpine region, the alpine height zones are located at different elevations.
According to Kilian et al. (1994, 48) the National Park Kalkalpen is located in the “Northern
Alps — eastern part” (Nérdlichen Randalpen — Ostteil). Here the higher subalpine zone is
positioned between an elevation of 1500 m a.s.l. and 2000 m a.s.l. Neither training, nor

validation samples located above 1500 m a.s.l. are therefore utilized (see Figure 8).
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Figure 8: Higher subalpine zone in the study area National Park Kalkalpen

6.1.2. ALS

The ALS data is not only used for the training, but also for the validation of the regressions,
which were calculated based on the Sentinel and the ALS or GEDI data. To be used for this
purpose, the ALS nDSM is downscaled from the original spatial resolution of 0.5x0.5 m to a
resolution of 10x10 m. It is important to ensure the positional accuracy of the new raster. In
order to carry out further calculations, it is crucial that the pixel distribution of the resampled
ALS raster is congruent with the Sentinel images. The ALS nDSM was therefore downscaled,
using a fishnet grid shapefile, that was generated based on a Sentinel image. Within one grid
2000 pixels of the ALS nDSM are merged (see Figure 9). Figure 9 also includes the GEDI plots
for comparison. For each grid both the statistical mean and the maximum of the ALS nDSM
pixel values are calculated. The mean values are utilized as stand in for the mean vegetation
height and the maximum values are used as the top or maximum vegetation height.
Furthermore, the FHD is calculated based on the ALS data with the formula developed by
MacArthur & MacArthur (1961, 594). In this case it was not possible to calculate the PAVD
needed to compute the PAI, hence the amplitude per height layer is used as a substitute for
the PAI. The vertical extent of each layer is set to 1 m. The FHD for the ALS data is then

29



calculated by using the discrete returns per height layer. This procedure is also described in
the paper by Hirschmugl et al. (2023, 5).

Finally, areas intersecting with the forest change and the higher subalpine zone generated
beforehand in chapter 6.1.1. are removed, resulting in a final fishnet grid shapefile, consisting
of 508193 individual pixels, each one containing an ALS mean, max and FHD value. Based
on this shapefile the correlation is calculated and the training and validation samples are

generated.
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Figure 9: Comparison of fishnet grids and GEDI plots

30



6.1.3. GEDI

The GEDI products received from the LPDAAC and the ORNL DAAC are transformed into
shapefiles. The 9065 footprints provided by the L2A product are then filtered according to
certain parameters. These requirements are also listed in the paper of Hirschmugl et al. (2023,
5). For each applied filter the remaining footprints are given in brackets:
e Quality flag = 1; (4618)
o Waveforms with terrain height within accuracy limits. Due to the steep terrain,
inaccuracies with regards to the terrain height occur. In order not to impact the analysis,
these outliers (> 2*stdv) were discarded from further analysis; (4174)
e Acquisition during leaf-on season (June — October 2019 and 2020); (2911)
o Degrade flag = 0; (2911)
o Data overlapping the ALS coverage; (1734).
o Areas where no changes between 2018 and 2020 occurred (see chapter 6.1.1.); (1725)
e Footprints, where GEDI or ALS estimate heights above ground of 50 m or more are
removed to account for artefacts (e.g. from birds); (1692)
After the L2A shapefile has been filtered all L2B and L4A plots that overlap with the L2A plots
are selected to be used in this study. The resulting shapefile then contains the RH100, RH50,
FHD and AGBD values. Furthermore, footprints located in the higher subalpine zone are later

on excluded, resulting in a final set of 1156 plots in total.

6.1.4. Sentinel

All S1 as well as S2 tiles were preprocessed using the project partner Joanneum Research’s
software package IMPACT. This includes calculating the surface reflectance with Sen2Cor to
correct the impact of the atmosphere and resampling all bands to the resolution 10x10m per
pixel. Also, all bands were co-registered so that all pixels overlap. Clouds were filtered out with
the so-called Function of mask (Fmask) algorithm and a topographic normalization was
conducted with the Minnaert-correction in the IMPACT Tools. The Fmask was introduced by
Zhu and Woodcock in 2012 for cloud and cloud shadow detection in satellite imagery (Zhu &
Woodckock 2012, 83). Mainly used for Landsat imagery, it can also be applied to Sentinel data
(Frantz et al. 2018, 480). Since this preprocessing was needed for several steps in the
research project, this work was done only once for all data by Joanneum Research staff.

Several individual S2 images were disturbed by cloud cover, cloud shadow and haze, providing
no information in the affected areas. To create homogenous and noise-free images, the S2
images, as well as the S1 images were temporally aggregated, and several spectral-temporal

metrics were calculated (see Table 4). This compositing procedure combines the different
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measurements of co-located pixels in different orbits of geometrically registered data together
(Roy et al. 2010, 38). The calculated spectral-temporal metrics or temporal statistics are simply
statistical metrics, that describe the distribution of a spectral band or index over a specified
period of time (Pflugmacher et al. 2019, 588). This method has the advantage of substituting
missing information by means of previous or subsequent recordings. It enables one to obtain
more representative data.

The temporal statistics minimum, maximum, mean, median, standard deviation and variance
were calculated for S2 as well as S1 in R. More information can be found in chapter 6.1.4.1.
and chapter 6.1.4.2.

Table 4: Temporal Statistics Bands calculated for Sentinel-1 and Sentinel-2

1 Minimum min
2 Maximum max
3 Mean mean
4 Median med
5 Standard Deviation sd

6 Variance var

6.1.4.1. Sentinel-1

Following the basic preprocessing, dedicated time series analysis was done to generate stacks
of input data. The workflow is shown in Figure 10. Method A calculates for each of the four
orbits (ASC146, ASC44, DSC95 and DSC22) and the two polarisations (VV and VH) six
temporal statistics, based on all images available for the respective orbit and polarisation.
Resulting in 48 temporal statistics bands. Method B only differentiates the images according
to their polarisation. For each polarisation all orbits are combined. The calculated temporal
statistics amount to 12 bands. This was done in order to investigate if the orbit of recording
can also have an influence on the final result.

Furthermore, several GLCMs (see Chapter 3.2) were calculated based on the median temporal
statistics band in ERDAS. For calculating the GLCM in ERDAS a square window the size of
5x5 pixel was chosen. The calculated nine texture bands are listed in Table 5. For method A
for each orbit and polarisation the texture parameters were calculated based on the respective
median temporal statistics band, resulting in 72 bands. Method B utilizes the median temporal
statistics band for both polarisations, calculating 18 texture bands.

All bands calculated for method A amount to 120 bands in total and are later on employed for
the regression variation all bands. In the end method B counts 30 bands in total, that are used

for regression variation 4 Orbits. More information can be found in chapter 6.4.2.
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Table 5: Gray level co-occurrence matrix bands calculated based on the Temporal Statistics Median Band

Band Number Gray level co-occurrence matrix (GLCM) band

1 Contrast con

2 Dissimilarity dis

3 Homogenity homo
4 Angular second moment sec

5 Energy eng

6 Entropy ent

7 Correlation cor

8 Mean mean
9 Standard Deviation sd

Sentinel-1median composits of the four orbits
ASC44,AS5C146,D5C22, DSC95

@ Sentinel-1all bands

Sentinel-1

Sentinel-1
(2020) (2020) i
' "
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Polarization [ VH 2 L J ] i
2 PW ' o
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| ASCA4 a DsC22 | | DSC22
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v calculate Temporal Temporal
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Number of Bands:
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calculate

Number of Bands:
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Figure 10: Workflow model - Sentinel-1 data preprocessing. Method A. using all bands; Method B. using the

median composites of the four orbits ASC44, ASC146, DSC22 and DSC95
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6.1.4.2. Sentinel-2

In the beginning, the temporal statistics for each of the ten spectral bands were calculated,
using all 24 images recorded between the 3 of June 2019 and the 21t of September 2019.
Only images within the vegetation period were included in the analysis to avoid unwanted
spectral response from snow or shadows occurring in winter. This step resulted in 60 temporal
statistics bands. Furthermore, 21 VIs were calculated for each individual image with the
IMPACT Tool (see Table 6). The indices were selected, according to the literature in chapter
3.2. (see Chen et a. 2021; Debastiani et al. 2019; Li et al. 2020; Nandy et al. 2021, Pereira-
Pires 2021). Based on the 21 data templates for each Vs the temporal statistics were
calculated, delivering 126 bands (see Figure 11). Thus 186 bands in total are available to
analyze the correlation between S2 spectral characteristics and the vegetation parameters and

to later on calculate the regressions.

Table 6: Indices calculated based on Sentinel-2

Sentinel-2 Indices

DVI Difference Vegetation Index B8-B4
EVI Enhanced Vegetation Index 2.5 * (B8a—B4)/(B8a+6*B4—7.5*B2 +1)
EVIRE1 Red Edge 1 Enhanced Vegetation Index 2.5*(B5—-B4)/(B5+6*B4—7.5*B2+1)
GNDVI  Green Normalized Difference Vegetation Index (B8 - B3)/(B8 + B3)
MSAVI  Modified Soil Adjusted Vegetation Index ((B8 - B4)*(1 + L))/(B8+B4+L)
* +1 - * + — * —

MSAVI2 Modified Soil Adjusted Vegetation Index2 &))/sta 1-sart((2*B8a +1)2 -8 * (B3a
MmSlI Moisture Stress Index B8/B11
NDII5 Normalized Difference Infrared Index — band5 (B5-B11)/(B5+ B11)
NDII7 Normalized Difference Infrared Index — band7 (B7- B11)/(B7+ B11)
NDVI Normalized Difference Vegetation Index (B8 - B4)/(B8 + B4)

Normalized difference vegetation index with
NDVI6 bands 4 and 6 (B6 - B4)/(B6 + B4)

Normalized difference vegetation index with
NDVI7 bands 4 and 7 (B7 - B4)/(B7 + B4)

Normalized difference vegetation index with
NDVI8a bands 4 and 8a (B8a - B4)/(B8a + B4)
NDWI Normalized Difference Water Index (B8-B11)/(B8 + B11)
NLVI Non-linear vegetation index with bands 4 and 5 = (B52 - B4)/(B52 + B4)
PSRI Plant Senescence Reflectance Index (B4 - B3)/B8
RVI Ratio vegetation index B8/B4
S2REP Sentinel-2 red edge position index 705 + 35 x [(B4 + B7)/2 — B5] x (B6 — B5)
SAVI Soil Adjusted Vegetation Index 1.5 x (B8 - B4)/(B8 +B4 +0.5)

. 0.3037 * B2 +0.2793 * B3 +0.4743 * B4 +0.5585

TCB Tasseled cap brightness * B8 40.5082 * B11 +0.1863 * B12
TCW Tasseled cap wetness 0.1509 * B2 +0.1973 * B3 +0.3279 * B4 +0.3406

* B8 +0.7112 * B11 +0.4572 * B12
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Figure 11: Workflow model - Sentinel-2 data preprocessing

6.2. Selection of Vegetation Parameters

6.2.1. Vegetation Height

In order to estimate which of the available GEDI RH values represents the maximum and mean
vegetation height best, a correlation between the ALS and GEDI data was done. Hereby the
correlation between the ALS maximum height and the GEDI values RH100, RH98, RH95 and
RH90 is investigated, as well as between the ALS mean height and the GEDI values RH75,
RH50 and RH25.

As can be seen by the result in Table 7, ALS mean, and ALS max show a positive correlation
with all selected GEDI parameters. As expected, ALS max has the strongest correlation with
RH100 and RH98 and ALS mean has the strongest correlation with RH50. Therefore, RH50 is
selected to represent the mean vegetation height. RH100 and RH98 both result in the same
correlation. In other studies, both RH100 and RH98 have been used as stand in for the upper

vegetation height. Here the RH100 is selected to represent the maximum height parameters.
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Table 7: Pearson correlation between ALS and GEDI mean and maximum height

Correlation with ALS max Correlation with ALS mean
RH100 0.64 RH75 0.68
RH98 0.64 RH50 0.70
RH95 0.63 RH25 0.62
RH90 0.61

6.2.2. Foliage Height Diversity

Furthermore, it is examined whether the GEDI FHD and ALS FHD values are comparable. If
the discrepancy between the two baseline datasets is too severe, validating the GEDI-based
regressions against the ALS data would not be meaningful.

The correlation coefficient R showed a result of ~ 0.53, indicating a moderate positive
correlation. Therefore, the data was determined to be fit to conduct validations and

comparisons, although this fact has to be taken into account when evaluating the results.

6.2.3. Aboveground Biomass Density

To compute regressions for the AGBD, the GEDI values are used as trainings and validation
data. Furthermore, an attempt was made to derive an AGBD raster from the ALS data. This
would have opened the possibility to conduct a more comprehensive validation of the GEDI
based AGBD regressions and to compare GEDI and ALS based AGBD regressions to one
another.

To calculate the AGBD from the nDSM, firstly the wood volume per ha was calculated with the
IMPACT Tool. The required data encompasses the nDSM, the DTM, the 10x10 m fishnet raster
and a raster containing the treetops generated from the nDSM. Also, a classification raster file
is needed. Hereby the Dominant Leaf Type (DLT) from the year 2018 by Copernicus was used.

The resulting raster was meant to be converted into the AGBD using following formula:

Equation 3: Volume to Biomass conversion equation (Kivari et al. 2011, 7)

Biomass = Volume x BCEF

BCEF: Biomass Conversion and Expansion Factors

As BCEF several different variations according to Weiss et al. (2000, 31ff.) were tested. Hereby
the conversion factors for coniferous trees (1.54), broadleaved trees (1.50) and beech trees,

that are older than 120 years (1.29), were employed.
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The correlation between the three ALS based AGBD rasters and the GEDI values was
examined for each GEDI plot. The correlation coefficient amounted to ~ 0.45 for each raster,
indicating a moderate correlation. Since the conversion only was a multiplication of the values,
the correlation between the three different AGBD rasters and the GEDI values stayed the
same. To enable a better review of the data the Root Mean Square Error (RMSE) for each
raster was calculated (see Table 8). The results show that the biggest deviation between the
ALS based, and GEDI based values, exists for the AGBD raster calculated with the BCEF for
coniferous trees (404.06 Mg/ha), followed by the AGBD raster for broadleaved trees (389.73
Mg/ha) and finally the AGBD raster calculated for old beech trees (315.54 Mg/ha). All three
results show a significant discrepancy of the ALS AGBD values from the GEDI AGBD values.
Combined with the moderate R values, the idea to use ALS based AGBD values was dropped.
The deviations were too significant to provide a meaningful comparison or validation with the
GEDI data.

Table 8: R, RMSE and RMSPE values between ALS based AGBD and GEDI based AGBD values.

R, RMSE and RMSPE values between ALS based AGBD and GEDI based AGBD
. |R____|RMSE(Mg/ha)

AGBD_conif 0.45 404.06
AGBD_broad 0.45 389.73 226
AGBD_beech 0.45 315.54 186

6.3. Correlation

The individual band correlations of different LIDAR data (ALS and GEDI) with S1 (Temporal
Statistics and Texture Bands) and S2 (Temporal Statistics for the Multispectral Bands and the
Indices) were studied. The R value (Bravais-Pearson correlation coefficient), as well as the R?
coefficient of determination were calculated (see chapter 3.4) with the programming language
R. When analysing the results, the negative and positive R values were viewed separately.

On the one hand, different data bases (see ALS and GEDI), and on the other hand different
sampling forms in which the data was available (see fishnet grid and GEDI plots) were used.
For the vegetation parameters ALS mean, ALS max and ALS FHD, the correlation between
the vegetation parameters and the sentinel data within the fishnet grid (508193 cells) and the
GEDI plots (1156 plots) was considered. This step was made to be able to examine how the
form of the available data can affect the results. For the GEDI data RH50, RH100, FHD and
AGBD only the GEDI plots were utilized to calculate the correlation. Due to covering a larger
area, the GEDI plots always overlap with several cells of the fishnet grid (see Figure 9 in
chapter 6.1.2.). Since the upscaling of data is usually more error-prone than the downscaling

of data, the values are not converted to a single fishnet cell.
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However, the different size and position of the GEDI plots compared to the fishnet grid also
raises the question to what extent the ALS data should be extracted and translated into this
data form. This problem also affects the Sentinel data, because their pixels are congruent with
the fishnet grid. Therefore, they can be used directly to calculate the correlation with the ALS
parameters within the fishnet grid. But when using the GEDI plots the Sentinel and ALS values
need to be converted to fit the new data frame. Three different methods were tested to extract
the mean values from the raster (see Figure 12):
A. Zonal statistics: Only the pixels, whose centroid is within the plot area (Zonal
Statistics tool in ArcGIS Pro, see A.)
B. Weighted mean: All pixels applying a weighted mean (see B.)
C. Center of footprint: Only one pixel per plot, which is fully covered by the plot (see
C.).

A. Zonal statistics B. Weighted mean C. Center of footprint

O GEDI footprint Dlncluded Pixels @ GEDI footprint center @ Pixel center

Figure 12: Different methods for the extraction of Sentinel values to GEDI plots

At the end of this work process, each Sentinel variable should have a R and R? value for the

vegetation parameters ALS mean, max and ALS FHD based on the fishnet grid and the GEDI
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plots, and for the GEDI vegetation parameters RH50, RH100, FHD and AGBD based on the
GEDI plots. The results for R and R? are included in the calculation of the regressions in the

next step.

6.4. Regression

The machine learning regression technique using the RF approach is used to create wall-to-
wall vegetation parameters. This ensemble learning method grows a user-defined number of
regression trees and averages their predictions (Rishmawi et al. 2021, 7). They show limited
prediction power but seem to be more resistant to overfitting (Garcia-Gutiérrez et al. 2015, 30).
The regressions were calculated for the GEDI vegetation parameters AGBD, FHD, RH50 and
RH100 and the ALS mean, ALS max and ALS FHD, utilizing different training samples,
Sentinel variable combinations and validation data. Figure 13 depicts the workflow. Each step

is explained in the following chapters.
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Method Workflow

Group A:
Validating regression results with ALS

Group B:
Validating regression results with GEDI

Step 1 Training Sample Selection
mflsl: Fisﬂr;etgrid:w I'ALSM: Gfgl plots:qw GEDI plots
max, mean, max, mean,
FHD) FHD, RH100, RH50, FHD) R0 BHG aoul Tl
* Stratified Crossvalidation
Proportional » Selectall GEDI Divide GEDI plotsinto 10 groups (90%
. plots ; s
Random Sampling train, 10% validation)
* Mumberof . )
* MNumberof les: 1156 Stratified Proportional Random
samples: 1156 =amples: Sampling
Step 2 Random Forest Regression
a) Allbands - AllSentinel bands (S1:120 & 52: 186)
b} 4 Orbits - 51: Mean of 4 Orbits (30) & S2: All bands (186}
c) Toplo - 10 highest R*values
d} Positive Correlation (PC) - 10 highest positive Rvalues
e} Megative Correlation (NC) - 10 highestnegativeRvalues
Step 3 Validation

ALS

GEDI

* Extract values for each fishnetgrid

Extract values for each validation GEDI
plot

Calculate

* RMSE
* MAE

Figure 13: Workflow of calculating regression rasters based on different training data.
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6.4.1. Step 1: Training Sample Selection

Different training datasets are generated depending on the data with which the calculated
regressions are ultimately validated. A distinction can be made between two groups. In Group
A, the results are validated with the available ALS data, in Group B with the respective GEDI
data (see Figure 13).

Within Group A, two different strategies are used to select the training samples. For strategy
A1, the samples are picked for the parameters ALS max, ALS mean and ALS FHD based on
the fishnet grid. To ensure a representative distribution of the values, a proportional random
sampling method is used. Here, each parameter is divided into representative value groups.
Within each group, every individual value is assigned a random number ranging from 1-1000.
All values that have been assigned the number 1 are selected and combined into a shapefile.
Ultimately, each of the three training datasets should contain 1156 samples. This number was
selected to ensure comparability with GEDI, since the number of GEDI samples is limited to
1156 due to the availability of the data. Strategy A2 uses all GEDI plots (1156) that are
available for training and provides training datasets for ALS max, ALS mean, ALS FHD, RH50,
RH100, GEDI FHD and AGBD. The ALS values are collected by calculating the mean value
for each GEDI plot.

For Group B the regressions based on the GEDI data for AGBD, FHD, RH50 and RH100 are
validated with the GEDI data itself through a cross-validation (see Figure 14). Here the training
and validation sample sets were also created by using the proportional random stratified
sampling method. The vegetation parameters were divided into representative value groups
and within each group a random number between 1 and 10 was assigned. The GEDI plots
were then merged into 10 shapefiles according to their number. They function later on as the
validation data. The training data also consist of 10 shapefiles. They are created by merging 9
of the previously constructed shapefiles. If the validation is done with the validation dataset 1,
the trainings dataset consists of set 2 to 10 (see Figure 14). The number of training plots always
amounts to 1041 or 1040, and the number of validation plots amounts accordingly to 115 or
116.
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Figure 14: Cross-validation of GEDI based regressions with GEDI data



The following figures (see Figure 15, Figure 16, Figure 17 and Figure 18) display the different
value distributions of the initial ALS and GEDI data and the training datasets for Group A. The
training datasets for Group B were not depicted, since they do not provide much information.
The initial data values for GEDI AGBD range from 28.44 to 569.29 Mg/ha (see Figure 15).
Predominantly represented is the value group 100 to 250 Mg/ha. Accordingly, this distribution
is then reproduced in the ten datasets for the cross-validation. Same can be said for the other
three parameters. The value distribution for the initial RH50, RH100 and GEDI FHD data can
be seen in Figure 16, Figure 17and Figure 18. For strategy A2 the whole GEDI dataset for
each parameter (except AGBD) is utilized as training dataset.

The mean vegetation height based on ALS mean for the whole study area ranges from 0 m to
46 m. However, most of the values are concentrated in the lower to middle height range below
25 m. The value group 0-5 m is the most prominent one with 25%. The training data based on
the fishnet grids reflects this value distribution very well. The training data based on the GEDI
plots differs from the value distribution of the study area in both the ALS mean and the RH50
data. They both cover a smaller value range, and the most prominent height group is 10-15 m
(see Figure 16).

The maximum vegetation height for the entire study area includes 0 m up to 50 m. Most of the
height values range from 20 m to 35 m. The training dataset based on the fishnet grids
captures this height distribution. The training datasets based on the GEDI plots also present
a similar distribution with most of the height values ranging between 20 m to 35 m. However,
vegetation height values below 15 m are less represented for these two datasets compared
to the whole study area. The height group 0 m to 5 m is not represented at all within the RH100
dataset, even though it accounts for 8% of the height values for the entire study area (see
Figure 17).

The FHD values for the study area range from 0 to 4. The value group 2.5 to 3.0 is overly
represented with 44%. The training data based on the fishnet grids covers every value group
within the study area, although the exact value distribution is not reproduced completely. The
training dataset, which uses ALS FHD data and the GEDI plots as samples, reflects the value
distribution of the study area better. However, this training dataset also showcases shifts in
the value distribution. The training dataset based on the GEDI data and the GEDI plots
presents a completely different value distribution. Most of the samples have values between
3.0 and 3.5. Furthermore, this training dataset does not have any values < 1.0 (see Figure
18).

When analysing the regression results later on the different value distributions of the training

datasets have to be considered.
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GEDI AGBD value distribution - 1156 plots
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Figure 15: The value distribution of AGBD for all GEDI plots
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Figure 16: The value distribution of the training data and initial data for the mean vegetation height. ALS mean values for the whole study area (upper left); ALS mean training
samples based on the fishnet grids (upper right); ALS mean training samples based on the GEDI plots (lower left) and for the GEDI RH50 training samples based on the GEDI
plots (lower right).
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ALS max value distribution within study area
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Figure 17: The value distribution of the training data and initial data for the maximum vegetation height. ALS max values for the whole study area (upper left); ALS max training
samples based on the fishnet grids (upper right); ALS max training samples based on the GEDI plots (lower left) and for the GEDI RH100 training samples based on the GEDI

plots (lower right).
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ALS FHD value distribution within study area
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Figure 18: The value distribution of the training data and initial data for the FHD. ALS FHD values for the whole study area (upper left); ALS FHD training samples based on the
fishnet grids (upper right); ALS FHD training samples based on the GEDI plots (lower left) and for the GEDI FHD training samples based on the GEDI plots (lower right).
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6.4.2. Step 2: Random Forest Regression — Settings and Variations

The RF regressions were calculated with the IMPACT Tool, a software package developed by
the Joanneum Research Graz. The following settings are used to calculate the regression in
three steps. First, the values of the S1 and S2 images are extracted via the training samples.
In this case the GEDI plots or the randomly selected fishnet grids for the ALS data. The class
name for the values, that are then connected with the Sentinel data must be specified, for
example RH50 or AGBD. In the next step the classifier, in this case the regressor, is trained
with a repetition of 1000. The documents which are generated in this step contain information
about the used features (bands). In the final step the regression rasters are calculated based
on the used features. Due to the fact, that they are based on Sentinel images with a resolution
of 10x10m per pixel, the resulting regressions also possess a resolution of 10x10m per pixel.
The RF regressions are calculated for the GEDI vegetation parameters AGBD, FHD, RH50
and RH100 using the GEDI plots. The results are validated with the GEDI values through a
cross-validation or the ALS data. Furthermore, RF regressions for the ALS mean, ALS max
and ALS FHD are generated, using the GEDI plots or fishnet grid cells selected through a

proportional stratified random sampling process as training data.

Five different input combinations of the Sentinel-1 and -2 raster files were tested (see Figure
13).

a) All bands: All available variables are used as input data, consisting of 120 S1 variables
encompassing different orbits, polarisations, and texture features and 186 S2 spectral
and VIs variables. In total 306 variables are utilized to calculate the regressions.

b) 4 Orbits: Using all 186 S2 features. Furthermore, the averaged temporal statistics and
GLCM bands for the two S1 polarisations are used. In total 216 variables are utilized
to calculate the regressions.

c) Top 10: For each vegetation parameter the ten Sentinel variables with the highest
coefficients of determination R? are utilized to calculate the regression.

d) Positive Correlation (PC): For each vegetation parameter the ten variables with the
highest positive Bravais-Pearson correlation coefficients R are utilized to calculate the
regression.

e) Negative Correlation (NC): For each vegetation parameter the ten variables with the
highest negative Bravais-Pearson correlation coefficients R are utilized to calculate the

regression.
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The all bands variation is used to examine the influence of all available variables on the quality
of the regression results. Since S1 images of four orbits are available, it was investigated
whether calculating averaged temporal statistics and texture values for each polarisation
based on the four orbits has an influence on the goodness of our results. Resulting in the
variation 4 Orbits. Also, the variations Top 70, PC and NC only employed ten Sentinel bands
with the highest R? values and the highest positive and negative R values. This option was
tested, because the IMPACT Tool often equipped bands with a high importance, that were not
similar to the ones with high correlation results calculated in chapter 6.3. The (random) number
ten was chosen as selecting criteria, because the correlation values for the different vegetation
parameters differentiated significantly from each other, making it challenging to find a
meaningful threshold based on the R? or R values. Furthermore, the combinations PC and NC
were also tested, even though the R? is based on R and the distribution of the values is
therefore the same. However, it is not possible to distinguish between a positive and negative
correlation when analysing the R? values. It is investigated if it affects the quality of the
regression results, whether they have been calculated with input variables, that only correlate

positively or negatively with the relevant vegetation parameter.

6.4.3. Step 3: Validation

To evaluate the quality of a regression model, an error in its predictions has to be calculated.
Commonly used error metrics are the RMSE and the Mean Absolute Error (MAE), which were
both used here.

The RMSE is the standard deviation of the residuals (prediction errors), which are a measure
of how far from the regression line data points are. It is calculated by obtaining the “total square
error” as the sum of the individual squared errors (see Equation 4). The total square error is
then divided by the number of used variables (n), which yields the mean-square error (MSE).
The final step is to take the RMSE as the square root of the MSE (Willmott & Mastuura 2005,
80).

Equation 4: Root mean square error equation (Barnston 1992, 700)

N
RMSE;, = ) (7 = 700)*/N]?

=1

Z; forecast

Z, observed valus

n = sample size.

(z+ — Z,)? = differences, squared
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The MAE is the average of all absolute error values (see Equation 5).

Equation 5: Mean absolut error equation (Glen)

1 n
MAE = —lei - X
n

i=1

X is the measurement,

x is the true value.

n = the number of errors,

[xi — x| = the absolute errors.

Both RMSE and the MAE have the advantage to be dimensioned, therefore they “express[es]
[the] average model-prediction error in the units of the variable of interest. [Furthermore,] these
measures also have been used to represent the average difference (rather than the average
error) when no set of estimates is known to be the most reliable” (Willmott & Mastuura 2005,
79). While some studies present the RMSE as a standard metric for model errors, others avoid
the RMSE and only present the MAE. Even though both statistical metrics have been used for
years to measure model performance, there is still no consensus on the most appropriate
metric for model errors. The RMSE varies with the variability of the error magnitudes and is
therefore more sensitive to outliers. The MAE however does not give more or less weight to
different types of errors and instead the scores increase linearly with increases in error. But
on the other hand, if the error distribution is expected to be Gaussian, the RMSE is more
appropriate to represent the model performance than the MAE (Chai & Draxler 2014, 12471f.).
The coefficient of determination R? is well established in classical regression analysis as a
regression error metric (Nagelkerke 1991, 691).

This work therefore uses the R?, the RMSE and the MAE to evaluate the performance of the
regression model. Depending on the training data used beforehand, different validation data
is used. The regressions calculated for the ALS mean, ALS max and ALS FHD using fishnet
grid cells as training samples, as well as the regressions generated for the ALS mean, ALS
max and ALS FHD and the GEDI RH100, RH50 and FHD values using all GEDI plots as
training samples are validated with the ALS mean, ALS max and the ALS FHD raster. The
10x10 fishnet created beforehand minus the higher subalpine area and the change areas, is
used to accurately extract the regression and the validation values. With the regression values
as the calculated/predicted and the validation values as the observed/measured values the
RMSE, MAE and R? are computed.

Validating the regressions based on GEDI data (RH50, RH100, FHD, AGBD) via a cross-

validation, utilizes the GEDI plots that have already been separated from the training data in
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chapter 6.4.1. (see Figure 14). The separation was conducted so that there are no overlaps
between training and validation data to guarantee independent validation. For each validation
plot, the corresponding values are extracted from the calculated regressions. Then the error
values RMSE, MAE and R? between the measured (validation) and predicted (regression)
values are calculated. Since the GEDI data was split up into ten datasets consisting of training
and validation samples to conduct a cross-validation, there are also ten error values for each
vegetation parameter and each error metric. These are averaged so that only one (mean)

RMSE, MAE and R? value is available for each parameter.

6.5. Further Analysis

To get a more differentiated view on the quality of both the initial ALS and GEDI data and the
calculated regression results, it makes sense to also consult other, completely independent

data sources.

6.5.1. Comparing AGBD Regression Results with existing Forest Inventory Data

Since it was not possible to calculate corresponding AGBD values based on the ALS data, the
AGBD regressions can only be calculated and validated using the GEDI data. Thus, the
comparison between airborne and spaceborne LIiDAR data is missing for this vegetation
parameter. To be able to ensure a comparison of the GEDI AGBD results with an external
data source, the forest inventory data from the stations 700 and 2900 of the LTER initiative
(EAA 2022) are utilized. Both stations are located outside the study area where the original
GEDI data is available. Thus, only a comparison with the AGBD regression results can be
made, as they are calculated using the Sentinel data, which also covers the two stations.
AGBD values from the forest inventory at these two stations were compared to the respective
regression values (see Figure 19) and the deviation between calculated AGBD and the

measured AGBD can be determined.
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Figure 19: Pixel extent of the AGBD regression that are congruent with the two forest inventory stations.

6.5.2. Analysing the Influence of Study Area Characteristics

The influence of the study area characteristics on the error distribution of the regression results
was also investigated. The three characteristics TCD, DLT and slope gradient were examined.
Each characteristic is divided into different classes. The TCD is sorted into the four classes O-
25%; 25%-50%; 50-75% and 75-100%. The DLT is classified as no forest, broadleaved trees
and coniferous trees. The slope gradient is also divided into four classes 0-20°; 20-40°; 40-
60° and 60-80°. For each class of the study area characteristics the RMSE of the four
vegetation parameters is calculated separately. The RMSEs are then compared between the
different classes, and it is analyzed if there is an emerging trend.

A similar method was used by Adam et al. (2020) when analysing the influence of

environmental parameters on the accuracy of GEDI canopy height estimates.
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6.5.3. Visual Analysis of the Field Plots

By visually analysing and interpreting the collected field data, it is possible to juxtapose the
original and the predicted data values (GEDI & ALS) for all four vegetation parameters with
the actual conditions on site.

It is analyzed what different types of tree species are found on respective plots and which
forest type results from it. Furthermore, the number of tree layers and the expression of the
vertical structure are estimated. Due to time constraints, no precise height measurements of
individual trees could be made on the respective plots. However, it was possible to provide a

rough canopy height estimate by means of visual interpretation.
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7. Results

7.1. Correlation

The three different extraction methods were tested for the parameters ALS mean, ALS max,
RH50 and RH100 (see Figure 12). The R?s between the parameters and the Sentinel variables
were calculated and compared. In Table 9 the minimum and maximum R? results for each
method are listed. They achieve similar results for each parameter with very little variation.
Method A (Zonal statistics) has a better R> maximum value for parameter ALS mean compared
to both method B. and method C. and a higher R? maximum value for parameter ALS max

and RH100 compared to method C. Therefore, this method is used for all the following results.

Table 9: Assessment of the extraction methods according to their R*> minimum and maximum values

A. Zonal statistics B. Weighted mean C. Center of footprint

0.00 0.45 0.00 0.39 0.00 0.43

NCER 0.00 0.20 0.00 0.20 0.00 0.20
| ALS max iy 0.20 0.00 0.21 0.00 0.19
| RH100 ool 0.11 0.00 0.11 0.00 0.10

| R2- minimum | R?- maximum | R2- minimum | R? - maximum | R2- minimum | R? - maximum

7.1.1. Correlation between ALS mean, ALS max or ALS FHD and Sentinel
Bands based on Fishnet Grids

First of all, the coefficients of determination R? between the mean (ALS mean) and maximum
(ALS max) vegetation height and the Sentinel variables for the whole research area were
calculated for the spatial resolution 10x10 m per pixel. The ten highest R? results for ALS mean
covered a value range of 0.33 to 0.38 and for ALS max a value range of 0.22 up to 0.26. It
was furthermore investigated, if the tree cover density or the type of forest stand (broad leaved
or coniferous) has an impact on the correlation. For ALS mean, as well as ALS max the results
showed, that excluding areas with lower tree cover density or dividing the area up into the
different forest types always led to a decrease of the R? results (see Table 29 and Table 30).
The importance of the spatial resolution was also examined by calculating for ALS mean as
well as ALS max the R? values for the resolution 10x10, 30x30 and 100x100 m per pixel (see
Table 29, Table 30 and Table 31). ALS mean experiences a lot more improvement if the spatial
resolution is downscaled (best results: 0.38 (10x10) — 0.44 (30x30) — 0.55 (100x100)), while
ALS max experiences a deterioration of its results (best results: 0.26 (10x10) — 0.20 (30x30)
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— 0.19 (100x100)). It can be said, that a larger spatial resolution leads to a higher disparity
between correlation results for ALS mean and max.

Due to the first regression results showing a high susceptibility to errors in areas with mountain
pine, the higher subalpine zone was excluded from the research area. The R? values were
again calculated for ALS mean, ALS max as well as ALS FHD, but this time only for fishnet
grids (10x10) outside of the high subalpine zone (see Figure 8). The ten best R? values for
ALS mean ranged from 0.33 to 0.38 and ALS max ranged from 0.22 to 0.25 and hardly differ
from the results calculated using the whole area (see Table 10 and Table 11). The results for
ALS FHD range from 0.16 to 0.27 (see Table 12).

Overall, indices based on S2 mostly reap the highest correlation. Hereby the mean band of
the NDVI6 has the highest results for almost every correlation between ALS mean and
Sentinel. The exception is the correlation between ALS mean and Sentinel, both with a spatial
resolution of 30x30. Here the median band of NLVI achieves the highest result. For ALS max
the median band of NLVI most often has the highest correlation, but the best R? results are
also achieved with the mean band of the NDVI6. ALS FHD has the strongest correlations with
the S2 multispectral bands vegetation red edge (B5), green (B3), shortwave infrared (B12),
red (B4) and shortwave infrared-cirrus (B11), in particular the median and mean band of the
vegetation red edge band. All S1 bands on the other hand performed very poor (< 0.03) (see
Table 32 and Table 33). One can also observe that the mean band of the temporal statistics
bands most commonly achieve the highest results, followed by the median bands.
Furthermore, the correlation coefficient R was calculated for the ALS mean, ALS max and
ALS FHD with the resolution 10x10 and excluding the high subalpine zone. R enables one to
differentiate between a positive and negative correlation. The positive correlation for ALS
mean covered a value range of 0.57 to 0.61 indicating a moderate to strong correlation and
for ALS max a value range of 0.47 to 0.50 indicating a moderate correlation, while the negative
correlation values for ALS mean ranged from -0.42 to -0.57 (moderate) and for ALS max from
-0.32 to -0.46 (weak to moderate) (see Table 10 and Table 11). The ten highest positive
correlation values for ALS FHD cover a value range of 0.28 to 0.38, showcasing a weak
correlation between the ALS based FHD values and the Sentinel data. The ten best negative
correlation values for ALS FHD start at -0.40 and reach up to -0.52, indicating a moderate
correlation (see Table 12).

Indices that had a high positive correlation for ALS max and ALS mean, as well as ALS FHD
were NDVI6, NDVI7, NLVI and NDVI8a. Furthermore, the mean and median band of NDWI
had a high negative correlation with both ALS max and ALS mean. The red bands (B4) and
the first vegetation red edge band (B5) had high negative correlation values with ALS mean,
ALS max and ALS FHD.
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Also, one can observe that the bands with the ten highest R? results for ALS mean are the
same bands with the ten highest positive correlations. A similar situation can be observed for
ALS FHD. Hereby the ten bands with the highest R? results are the same bands with the ten

best negative correlation values.

Table 10: The ten highest R? the ten highest positive and highest negative R values between ALS mean and
individual Sentinel variables for the study area without the higher subalpine zone (fishnet 10x10). The Sentinel
variables achieving the ten highest R? and positive R values are the same.

ALS mean

Temporal Temporal R Temporal R
Parameter | Statistics R2 Parameter | Statistics Fesit] Parameter | Statistics it
Band Band P Band &

NDVI6 0.38 NDVI6 mean 0.61 NDWI -0.57

NDVI6 0.37 NDVI6 med 0.61 NDWI med -0.55

0.37 EVI mean 0.61 NDII7 max -0.52

0.36 EVI med 0.60 mean -0.50

034 NLVI med 0.58 NDII7 mean -0.50
0.33 NDVI7 mean 0.57 NDII7 med -0.48
0.33 NCYESE mean 0.57 med -0.48
0.33 NDVI mean 0.57 NDIIS max -0.47
0.33 SAVI mean 0.57 med -0.44

MSAVI 0.33 MSAVI mean 0.57 NDWI max -0.44

B

@ o) o)

(2}

Table 11: The ten highest R? the ten highest positive and highest negative R values between ALS max and
individual Sentinel variables for the study area without the higher subalpine zone (fishnet 10x10).

ALS max

Temporal Temporal R Temporal R

Parameter | Statistics Parameter | Statistics " Parameter Statistics .
Band Band (positive) Band (negative)

NDVI6 0.50 B4 -0.50
med 0.50 med -0.48
med 0.50 LR med -0.47
mean  0.48 mean  -0.46
mean  0.48 mean  -0.46
mean  0.47 med -0.46
med 0.47 NGRS mean  -046
mean  0.47 DT ed -0.45
med 0.47 mean  -0.42
mean 047 med -0.40
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Table 12: The ten highest R? the ten highest positive and highest negative R values between ALS FHD and
individual Sentinel variables for the study area without the higher subalpine zone (fishnet 10x10). The Sentinel
variables achieving the ten highest R? and negative R values are the same.

ALS FHD

Temporal Temporal R Temporal R
Parameter | Statistics R? Parameter | Statistics eesitia) Parameter | Statistics e
Band Band P Band g

med 0.27 TCW min 0.38 med -0.52
mean 0.26 TCW med 0.36 mean -0.51
mean 0.22 TCW mean 0.36 mean -0.47
med 0.22 NLVI med 0.33 med -0.47
med 0.17 NDVI6 med 0.30 med -0.42
mean 0.17 NDVI6 mean 0.29 mean -0.41
mean 0.17 NLVI mean 0.29 mean -0.41
med 0.17 NDVI8a mean 0.29 med -0.41
med 0.16 NDVI7 mean 0.29 med -0.40
max 0.16 NDVI8a med 0.28 max -0.40

@ |®© | @
w ||
@© | @

joe]
w
[oe]
w

iI

7.1.2. Correlation between ALS mean, ALS max, ALS FHD, RH50, RH100,
AGBD or FHD and Sentinel Bands based on GEDI Plots

The GEDI plots were utilized to extract the mean value for each individual Sentinel variable
and for ALS mean, ALS max and ALS FHD. The R? and R between the vegetation parameters
based on GEDI (RH50, RH100, FHD, AGBD) or ALS (ALS mean, ALS max, ALS FHD) and
the individual Sentinel variables were computed.

For the GEDI based parameters (see Table 13), RH50 achieved the highest R? values with a
value range for the ten highest R? results between 0.14 and 0.16. FHD and AGBD are covering
a similar range of values, with 0.06 to 0.11 for FHD and 0.08 to 0.11 for AGBD. RH100
showcased the poorest results, covering a value range of 0.05 to 0.08. The R? results for the
ALS based parameters performed a lot better compared to the GEDI based parameters. ALS
FHD covered a value range of 0.11 up to 0.19, ALS max ranged from 0.13 to 0.20 and ALS
mean achieved the highest R? results (0.34 to 0.41), which were even higher, than the R?
values calculated for ALS mean based on the fishnet grids.

Generally, individual variable correlation is very low for vegetation parameters based on GEDI
and also the ALS max and ALS FHD. This suggests that including multiple bands for useable
results is inevitable.

Most frequently the median band of the NLVI appears to be among the 10 highest R? results,
except for ALS FHD. For RH50, AGBD and ALS mean the median band of the NLVI obtains
the highest R? values. Furthermore, the results for the maximum vegetation height (RH100
and ALS max) and the FHD, both GEDI and ALS, appear to achieve the highest R? values for
the mean and median bands of the single S2 bands blue (B2) and red (B4), but especially for
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green (B3) and vegetation red edge (B5). Again, calculating the R? with S1 variables results
in very low values (< 0.03) for all parameters (see chapter Appendix B Table 34).

When evaluating the positive and negative R values naturally the parameter with the highest
positive and negative correlations is ALS mean. Showing moderate to strong positive
correlations (0.58 to 0.64) and moderate negative correlations (-0.51 to -0.57), with similar
bands as the correlations between ALS mean and Sentinel using the fishnet grids. ALS max,
as well as ALS FHD show weak positive correlations (ALS max: 0.34 to 0.38/ALS FHD: 0.28
to 0.31) and weak to moderate negative correlations (ALS max: -0.35 to -0.45/ALS FHD: -0.33
to -0.44). Furthermore, the R values for ALS mean, ALS max and ALS FHD based on the
fishnet grids and the ones for ALS mean, ALS max and ALS FHD based on the GEDI plots
are compared. This reveals, that the positive correlation for ALS max using the fishnet grid
(0.47 to 0.50) achieves higher values than the one using the GEDI plots (0.34 to 0.38). The
negative correlation for ALS max using the fishnet grid (-0.40 to -0.50), is also better, than the
one using the GEDI plots (-0.35 to -0.45). The positive correlation values for ALS FHD roughly
cover the same value range (grid: 0.28 to 0.38/plots: 0.28 to 0.31), while the negative
correlation values clearly show, that ALS FHD using the fishnet grid achieves better results
(grid: -0.40 to -0.52/plots: -0.33 to -0.44). For the ALS mean based on the fishnet grid as well
as the GEDI plots the negative (grid: -0.44 to -0.57/plots: -0.51 to -0.57) as well as the positive
(grid: 0.57 to 0.61/plots: 0.58 to 0.64) correlation results cover a similar value range (see Table
10, Table 11, Table 12 and Table 13).

The vegetation parameter based on the GEDI data with the highest R values is RH50,
showcasing a weak to moderate positive correlations (0.37 to 0.41) and weak negative
correlations (-0.32 to -0.38). RH100 achieves weak results for the positive (0.22 to 0.27), as
well as the negative (-0.22 to -0.28) correlation. So do AGBD and FHD. But it can be noted,
that FHD has slightly better results for the negative (-0.25 to -0.33), than the positive (0.22 to
0.27) correlation. A similar observation can be made for AGBD, only here the positive
correlation (0.29 to 0.33) achieves better results than the negative correlation (-0.26 to -0.28)
(see Table 13).

The median band for the NLVI has the highest positive correlation values for all parameters
except for the ALS FHD, which obtains its highest positive R value for the median band of
MSAVI2. RH100, ALS max, FHD and ALS FHD show the best negative correlations for the
median and mean bands of the single S2 bands green (B3), first vegetation red edge (B5) and
red (B4). Furthermore, the ten highest R? results for ALS mean and GEDI AGBD are congruent
to their ten highest positive correlation results. For the parameter ALS FHD the ten highest R?

results are the same as the ten best negative correlation values.

58



Table 13: The ten highest R? values between GEDI (RH50, RH100, FHD, AGBD) or ALS (AL mean, ALS max,
FHD) based parameters and individual Sentinel variables for the research area without the high subalpine zone
(fishnet 10x10). The ten highest positive and negative Pearson correlation values between GEDI (RH50, RH100,
AGBD, FHD) or ALS (ALS mean, ALS max, ALS FHD) based parameters and individual Sentinel bands for the
research area without the high subalpine zone (fishnet 10x10).

Temporal

Temporal R Temporal
Parameter | Statistics Parameter | Statistics " Parameter | Statistics
Band Band (positive) Band
NLVI med 0.41 NDII7 i -0.38
Vv mean 0.40 NDII5 min -0.36
NDVI6 NDVI6 mean 0.40 NDWI mean -0.36
EVI EVI med 0.40 NDWI med -0.35
NDVI6 NDVI6 min 0.39 PSRI min -0.35
EVIRE1 EVIRE1 med 0.39 NDII7 mean -0.35
NDVI6 IN[DAVA[S) med 0.39 NDII7 med -0.33
) ) 0.39 NDII5 mean -0.32
NDII7 SAVI mean 0.37 mean -0.32
SAVI MSAVI mean 0.37 MSI sd -0.32

R
(negative)

NLVI
E

=

m

3
=

S

ALS mean

Temporal Temporal R Temporal
Parameter | Statistics Parameter | Statistics L Parameter | Statistics
Band Band (positive) Band

NLVI med 0.64 NDWI -0.57

NDVI6 mean 0.61 NDWI med -0.56
NDVI6 NDVI6 med 0.60 mean -0.56
E EV mean 0.60 NDII7 max -0.55
EVI EVI med 0.60 med -0.55
NDVI7 NDVI7 mean 0.59 med -0.54
NDVI8a NDVI8a mean 0.59 med -0.54
NDVI NDVI mean 0.58 mean -0.53
SAVI SAVI mean 0.58 med -0.52
MSAVI MSAVI mean 0.58 mean -0.51

R
(negative)

NLVI
NDVI6

S

<

B

w

(02}

w

GEDI RH100

Temporal Temporal R Temporal

Parameter | Statistics Parameter | Statistics L Parameter | Statistics
Band Band (positive) Band
NLVI 0.27

NLVI 0.26

NDVI7 0.23

NDVI6 0.23

NDVI8a 0.23

NDVI6 i 0.23

NDVI6 0.22

EVIRE1 0.22

NDVI7 0.22

EVIRE1 0.22

R
(negative)

(02}

-0.28
mean -0.27
med -0.27
mean -0.26

v}
(0]

(2}

v
(0]
w

w

mean -0.26
min -0.24
med -0.24
mean -0.23
max -0.23
med -0.22

o
(U8)

o
B
B

N

S

w
S

o
(U8)

N
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Temporal

Temporal Temporal

Parameter | Statistics Parameter | Statistics R . Parameter | Statistics

Band Band o) Band
NLVI 0.38
NDVI7 0.36
NDVI8a 0.36
NDVI8a 0.36
NDVI7 0.35
MSAVI2 0.35
MSAVI2 0.35
NDVI 0.34
MSAVI 0.34
YA\ 0.34

R
(negative)

@
w
w

-0.45
med -0.45
mean -0.44

@
(6]
(U]

@
w
w

mean -0.43

los)
B
B

mean -0.42
med -0.42
med -0.40
mean -0.40
min -0.36
med -0.35

los)
D

@
(6]

™ |
N[N
NININD

@®
=
N

v}
N

Temporal Temporal R Temporal

Parameter | Statistics Parameter | Statistics " Parameter | Statistics
Band Band (B i) Band

NLVI med

min

R
(negative)

ve]
(0]

0.27
0.26
NLVI mean 0.24
NDVI6 min 0.24
NDVI7 min 0.23
NDVI6 mean 0.22
NDVI7 mean 0.22
NDVI8a mean 0.22
NDVI8a min 0.22
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GEDI AGBD

Temporal Temporal Temporal
Parameter | Statistics R? Parameter | Statistics R Parameter | Statistics R.
Band Band (positive) Band (negative)
med 0.11 med 0.33 I mean -0.28
min 0.10 min 0.31 X i -0.28
mean 0.09 mean 0.31 _ mean -0.27
mean 0.09 mean 0.30 _ max -0.27
med 0.09 med 0.30 | NDII7  JEY -0.27
med 0.09 med 0.30 DY med -0.27
mean 0.09 mean 0.30 med -0.27
mean 0.09 mean 0.29 m max -0.26
EVI med 0.09 EVI med 0.29 P med -0.26
mean 0.08 mean 0.29 med -0.26

Following up, the ten highest R? and R (positive and negative) results for each parameter are
used for the modelling of the regressions (variable combinations: Top 10, PC, NC). Except for
ALS mean and max based on the fishnet grid and ALS mean and GEDI AGBD based on the
GEDI plots, that share the same results between the R? and positive R values. And ALS FHD,
where the ten highest R? results are the same as the ten best negative correlation values.
Here only the R? results are employed for the calculation of the regression. So only the variable
combination Top 10 is tested.

S1 correlations continuously performed very poorly for all parameters, no matter if based on
the fishnet grid or the GEDI plots. Nonetheless the S1 bands were also employed for the RF
regression, due to the fact, that the RF classifier automatically selects the most important

features in the regression process.

7.1.3. Comparing Correlation Results and Used Features

The previous chapter investigated which Sentinel variables and vegetation parameters have
a particularly strong correlation. This chapter examines if the correlation is crucial for the
calculation of the regressions.

When computing the regressions with RF in the IMPACT Tool, a .pkl file and a .txt file are
generated in the intermediate step Train a Classifier. Within the text file the features selected
for further calculations are listed, as well as the feature importance. The feature importance
describes the relative degree of usefulness of a specific variable for a current model and
prediction (Liaw & Wiener 2002, 18).
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The method Top 70 only utilizes the ten variables with the highest R? values to compute the
regressions. Therewith the feature importance of the input variables for the method Top 10 is
examined for each vegetation parameter and compared to the R? results.

Furthermore, when using all Sentinel variables for the method all bands to calculate the
regression, only a handful of bands are selected as input variables and endowed with a certain
feature importance by the IMPACT Tool. To investigate, if these variables are consistent with
the bands with the strongest correlations, the used features and the feature importance for all
bands and Top 10 are compared. This shows how significant a high correlation between
individual bands and the respective vegetation parameters is when the RF algorithm is free to
choose.

Also, the used features and the feature importance for the cross-validation are examined,
when using the method all bands. It is analyzed how often features are used when the model
is run through ten times with different training datasets. An average feature importance is

calculated based on the individual importance values of the different training runs.

7.1.3.1.  Mean Vegetation Height

For the mean vegetation height, the used features and the feature importance for the three
variations; ALS mean data within the fishnet grids, ALS mean data within the GEDI plots and
RHS50 data within the GEDI plots were analysed (see Figure 20).

First of all, the feature importance of the method Top 70 is compared to the R? results (see
Table 10 and Table 13). ALS mean (fishnet) achieves the highest feature importance 40% for
the median band of NLVI which has a R? of 0.34. The second highest feature importance has
the mean band of NDVI6 with 32%. This band has the highest correlation with R?= 0.38. The
remaining bands reach a feature importance of 1-9% and cover R? values of 0.33 to 0.37. For
ALS mean (plots) it is noticeable, that although all 10 bands for the method Top 70 were
entered into the algorithm, only six were selected. Particularly the mean band of NDVI6 has a
significant feature importance with 71%. Also, it reaches the second highest correlation with
R? = 0.37. The median band of NLVI has the highest R? value with 0.40, but only reaches a
feature importance of 18%. For the parameter RH50 the mean band of NDVI6 again has the
highest feature importance with 54% and the third highest R? value with 0.16. The other bands
all have a feature importance between 3-9%. All three variations (ALS fishnet, ALS plot, GEDI)
use the mean bands of EVI and NDVI6 and the median bands of EVI, NDVI6 and NLVI.
Furthermore, the mean bands of NDVI8a and SAVI are used twice. However, the remaining
bands only occur individually for each variation. The highest feature importance for all three

variations is achieved for the mean band of NDVI6 or the median band of NLVI.
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Further, the used features and feature importance for the method all bands are analysed and
compared to the method Top 10. For the variation ALS mean (fishnet) ten features are used.
The mean band of NDVI6 has the highest feature importance with 27%, followed by the
median band of NLVI with 20% and the mean red band (B4) with 12%. The other variables
only record a feature importance of 2-8%. ALS mean (plots) only employs eight features and
the feature importance is distributed amongst the mean band of NDVI6 (27%) and the median
(26%) and mean (23%) red band (B4). The remaining variables have a feature importance
between 3-6%. For RH50 eleven features are used. It is noticeable, that five texture bands
are utilized even though they all only achieve a feature importance between 4- 5%. The most
significant feature importance again is achieved for the mean band of NDVI6 with 46%. The
minimum band of PSRI has the second highest feature importance with 10%. For the method
all bands the mean red band (B4) and the mean band of NDVI6 are used in all three variations.
The median green (B3), red (B4) and first vegetation red edge (B5) bands and the minimum
band for PSIR are used for two variations. All other bands were only used for one of the
variations.

Comparing the variable combinations Top 70 and all bands it can be ascertained that the
mean band of NDVI6 is used by all three variations (ALS fishnet, ALS plot, GEDI) for both
variable combinations and has the highest feature importance values. The median bands of
NDVI6 and NLVI are also utilized by the two variable combinations for the variation ALS mean

(fishnet). Otherwise, there is no feature overlap between the two variable combinations.
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Feature Importance - Mean Vegetation Height
Method: Calculated with All Bands and Top10
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Figure 20: Comparing the used features and the feature importance for the mean vegetation height between the methods all bands and Top 10 and the three variations ALS
mean (fishnet), ALS mean (plots) and GEDI RH50 (plots).
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number of features

Furthermore, the used features and feature importance for the cross-validation are analysed.
Hereby, the results for RH50 using the method all bands are looked at (see Figure 21). RH50
uses the mean band for NDVI6, the minimum band for PSRI and the standard deviation band
of the GLCM for VH44 for all ten regressions achieving an averaged feature importance of
35%, 11% and 9% respectively. For nine out of ten regressions the mean band of the GLCM
for VH44 and VV22, the median band for the first vegetation red edge band (B5) and the
median band for NDVI6 came into use, reaching importance values of respectively 6%, 6%,
7% and 11%. In total 23 different bands were employed for the calculation of the ten RH50

regressions.

RH50 used features and mean importance (All Bands)
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7.1.3.2.  Maximum Vegetation Height

For the maximum vegetation height, the used features and the feature importance for the three
variations; ALS max data within the fishnet grids, ALS max data within the GEDI plots and
RH100 data within the GEDI plots are analysed (see Figure 22). The feature importance of
the variable combination Top 70 in relation to their respective R? (see Table 11 and Table 13)
values is investigated.

ALS max (fishnet) has its highest feature importance 54% for the median first vegetation red
edge band (B5) with a R? value of 0.23. Followed by the mean red band (B4) with a feature
importance of 13% and a R? of 0.25. All other bands cover a feature importance of only 3-5%.

ALS max (plots) achieves a feature importance of 50% and a R? value of 0.18 for the mean
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first vegetation red edge band (B5). Furthermore, the median first vegetation red edge band
(B5) has a feature importance of 17% and a R? of 0.25. The remaining bands have a feature
importance between 2-7%. For RH100 the feature importance is not as heavily concentrated
on a single band as for ALS max but distributed over several bands. The median first
vegetation red edge band (B5) has the strongest feature importance with 19% and at the same
time the highest R? value with 0.08. Followed by the minimum band for PSRI with a feature
importance of 16% (R? = 0.06). Then comes the mean red band (B4) with a feature importance
of 14% (R? = 0.079). Both the median band for NLVI (R? = 0.07) and the mean band for NDVI7
(R% = 0.05) achieve a feature importance of 10%. The remaining bands are distributed across
a feature importance of 4-9 %.

Overall, all three variants use the mean and median red band (B4), the median first vegetation
red edge band (B5) and the median band of NLVI. The highest feature importance is recorded
for the mean and median first vegetation red edge band (B5).

Analysing the used features and feature importance for the method all bands it can be found
that ALS max (fishnet) has the highest feature importance for the median green band (B3)
with 30%, followed by the mean green band (B3) with 23%. Furthermore, the median first
vegetation red edge band (B5) and the standard deviation band of the GLCM for VH44 both
have a feature importance of 10%. The remaining bands achieve a feature importance of 4-
6%. In total nine features are employed. ALS max (plots) registers its highest feature
importance at 36% for the mean first vegetation red edge band (B5). The median first
vegetation red edge band (B5) achieves a feature importance of 12%, while the other bands
are located between 2-6%. In total sixteen features are used. For RH100 as many as twenty
features are entertained. The one with the highest importance being the standard deviation
band of GLCM for VH44 with 19%, followed by the median first vegetation red edge band (B5)
with 11%. All other bands spread over a spectrum of 2-8%. For the method all bands, all three
variations use the bands median first vegetation red edge (B5), the standard deviation band
of GLCM for the orbits VH22 and VH44 and the minimum and median band of NDVI6. For
each of the three variations, the variables recording the highest feature importance
differentiate from each other.

Overall, only the median first vegetation red edge band (B5) is used with all three variations
(ALS fishnet, ALS plots, GEDI) for the variable combinations Top 70 as well as all bands. This
variable also records high feature importance values for all three variations in both methods.
Other used features that overlap between Top 70 and all bands are the mean blue band (B2),
the mean and median green band (B3), red band (B4) and NDVI6 and the minimum PSRI.
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Feature Importance - Maximum Vegetation Height
Method: Calculated with All Bands and Top10
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Figure 22: Comparing the used features and the feature importance for the maximum vegetation height between the methods all bands and Top 10 and the three variations ALS

max (fishnet), ALS max (plots) and GEDI RH100 (plots).
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The used features and feature importance for the cross-validation are also investigated (see
Figure 23). Like the feature importance analysed before, the median first vegetation red edge
band (B5) plays an important role. It is used for all ten regressions and has an average feature
importance of 11%, which is relatively high compared to the other importance values. But the
highest feature importance with 18% is given to the standard deviation band of the GLCM for
the VH44. Other bands that are also used for each individual run of the RF model are the
standard deviation band of the GLCM for the VH146 and the VH22 and the mean band of the
GLCM for the VH22 and the VH44. Furthermore, the mean red band (B4), the minimum and
mean band of the NDVI6 and the minimum band of PSRI are used for all ten regressions. Nine
out of ten times the minimum first vegetation red edge band (B5) and the median band for
NDII5 and NDVI6 are used. All these bands have roughly an averaged feature importance of

around 5%. All in all, one can count 28 used features for the ten regressions.
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7.1.3.3.  Foliage Height Diversity

For the FHD, the used features and the feature importance for the three variations; ALS FHD
data within the fishnet grid, ALS FHD data within the GEDI plots and GEDI FHD data within
the GEDI plots are analysed (see Figure 24). The feature importance of the variable

combination Top 70 in relation to their respective R? values (see Table 12 and Table 13) is

investigated.
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For the ALS FHD (fishnet) the median first vegetation red edge band (B5) has both the highest
R? value (0.27) and the highest feature importance (35%). The median green band (B3)
achieves the second highest feature importance with 24% (R?= 0.22). Both the mean green
band (R? = 0.22) and the mean first vegetation red edge band (R? = 026) have a feature
importance of 10%. The remaining bands cover a feature importance of 3-5% and R? values
of 0.16-0.17. The two bands with the highest feature importance for the ALS FHD (plots) are
the median and mean first vegetation red edge band (B5) with 31% and 30%, and R? values
of 0.26 and 0.22. The median band of TCB, the SWIR band (B12) and the green band (B3)
record a feature importance of 10%, 9% and 8% and a R? of 0.11, 0.11 and 0.19. The other
bands are distributed between 2-3% and cover R? values between 0.15-0.18. Similar to
RH100, the feature importance for GEDI FHD is not so heavily concentrated on a single band
but is distributed over several variables. The minimum first vegetation red edge band (B5) has
the highest feature importance with 23%, even though having the lowest correlation of the
selected variables with R? = 0.06. Other bands achieving a relatively high feature importance
are the median green band (B3) with 17% and a R? of 0.09, the mean red band (B4) with 17%
and a R? of 0.08 and the median band of the NLVI achieving an importance of 11% and a R?
of 0.07. The remaining bands cover a value range of 3-9% and R? of 0.06-0.11.

For all three variations (ALS fishnet, ALS plots, GEDI) different temporal statistics bands
(minimum, mean, median) of the first vegetation red edge band (B5) achieve the highest
feature importance. Also, the mean and median green band (B3) and the mean red band (B4)
are used by all three variations, and some obtain a significant feature importance.

Further, the used features and feature importance for the method all bands are analysed and
compared to the method Top 10 (see Figure 24). For ALS FHD (fishnet) the variable with the
highest feature importance is the median first vegetation red edge band (B5) with 33%. The
median green band (B3) has a significant feature importance at 25%, followed by the mean
green band (B3) with 10%. In total seven features are used. Most of them are temporal
statistics bands of the green and the vegetation red edge band. Other bands that are utilized
are the maximum band of TCB (7%) and the standard deviation band of the GLCM for VH146
(9%). The ALS FHD (plots) has two bands that are attributed with a significant feature
importance. The mean and median first vegetation red edge band (B5) with 23% and 22%.
The remaining bands cover a feature importance of 2-7%. In total sixteen features are
employed. The feature importance of the fourteen features used for GEDI FHD is distributed
quite diversly. The highest feature importance can be ascribed to the minimum first vegetation
red edge band (B5) with 14%. Followed by the standard deviation of the GLCM for the VH44
and the median green band (B3) both with 11% and the mean red band (B4) with 10%. The
remaining bands cover an importance spectrum of 3-7%. The mean and median first
vegetation red edge bands (B5), as well as the standard deviation band of the GLCM for VH44
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is utilized for all three variations (ALS fishnet, ALS plot, GEDI). Again, the highest feature
importance is recorded for temporal statistics bands (minimum, mean, median) of the first
vegetation red edge band (B5), but high feature importance values have also been obtained
for temporal statistics bands (mean, median) of the green band (B3).

When comparing the used features between the variable combinations all bands and Top 10,
it can be determined, that only the mean and median first vegetation red edge band (B5) is
used for all three variations in both methods. The median green band (B3) is also utilized twice
for the method Top 70 and the method all bands. Otherwise, there are hardly any overlaps
between used features. Considering the feature importance both all bands as well as Top 10
record their highest feature importance values for different temporal statistics bands of the

green band (B3) and the first vegetation red edge band (B5).
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Feature Importance - Foliage Height Diversity
Method: Calculated with All Bands and Top10
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Figure 24: Comparing the used features and the feature importance for the FHD between the methods all bands and Top 10 and the three variations ALS FHD (fishnet), ALS
FHD (plots) and GEDI FHD (plots).
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For the ten FHD regressions calculated for the cross-validation, 47 bands were used in total
(see Figure 25). However, only two bands were utilized for all ten regressions, the standard
deviation of the GLCM for the VH44 and the minimum first vegetation red edge band (B5),
both having an averaged feature importance of 9%. The mean red band (B4) has the highest

averaged feature importance with 12% but is only used four out of ten times.
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Figure 25: Frequency of used features and averaged feature importance when calculating the FHD regressions
validation employing all bands.

via cross-

7.1.3.4.  Aboveground Biomass Density

For AGBD, only regressions trained and validated with the GEDI data through a cross-
validation were modelled. Hereby for each one of the ten regressions, there is a .txt file
available containing information regarding the used features and the feature importance. To
be able to compare the correlation results (see Table 13) with the feature importance of the
method Top 10, the regression with the best accuracy (lowest RMSE) was selected. This was
the 10" regression presenting a RMSE of 89.85 Mg/ha (see Table 38). For the comparison
between Top 70 and all bands also the 10" regression for all bands was selected (RMSE =
84.40 Mg/ha).

The highest correlation is presented for the median band of NLVI (R? = 0.11) and the minimum
(R? = 0.10) and mean (R? = 0.09) band of NDVI6. In terms of the feature importance these
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three bands are also assigned the highest values. However, the value distribution is slightly
different. The mean band of the NDVIG is attributed with the highest feature importance of
37%, followed by the median band of the NLVI with 16% and the minimum band of the NDVI16
with 14%. The remaining bands cover a feature importance between 3-9%, even though they
have almost the same R? values as the NLVI and the NDVI6. Calculating the AGBD regression
using the training set 10 with the variable combination all bands, the RF model selects 11
variables. Here, the greatest feature importance with 18% is also assigned to the mean band
of NDVI6. Other variables with a noticeable feature importance are the standard deviation
band of GLCM for the VH44 with 16%, the mean red band (B4) with 14% and the minimum
band of the PSRI with 12%. The rest of the variables have a feature importance of 4-8% (see
Figure 26).

Comparing the two, it can be determined, that only three temporal statistics bands (minimum,
mean, median) of the NDVI6 are utilized by Top 10 as well as all bands. Furthermore, both

register their highest feature importance for the mean band of NDVI6.

Feature Importance - Above Ground Biomass
Method: Calculated with All Bands and Top 10
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Figure 26: Comparing the used features and the feature importance for the AGBDs between the methods all bands
and Top 10.

For the ten AGBD regressions calculated for the cross-validation, 30 variables were used in
total (see Figure 27). AGBD records the highest averaged feature importance of 16% for both
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the mean band of NDVI6 and the standard deviation of GLCM for VH44. The first variable is
employed for all ten regressions the second one for nine regressions. Other bands that are
used ten out of ten times are the mean red band (B4) with 11%, the minimum PSRI (8%) and
the minimum (6%) band of the NDVI6. Nine out of ten times the maximum PSRI (4%) and the
mean band of the GLCM for VH44 (8%) and eight out of ten times the mean band of the GLCM
for VH22 (7%) and the mean NDII5 (5%) are used. Most of the other bands are listed for less

than half of the regressions as used feature and only possess an averaged feature importance

between 3-7%.
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7.2. Random Forest Regression

Different variable combinations were employed to calculate the regressions (see Figure 13),
and depending on the validation data, different training datasets were used.

It was possible to derive the maximum and mean vegetation height and the FHD from the ALS
data and use them both for training the regressions and for validating the results. On the one
hand, all available GEDI plots were utilized as training samples to calculate regressions for
the ALS mean, ALS max, ALS FHD, GEDI RH50, GEDI RH100 and GEDI FHD. On the other

hand, training samples based on the fishnet grid were used to calculate regressions for ALS
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mean, ALS max and ALS FHD. All the modelled regressions were then validated with the initial
ALS datasets for the mean and maximum vegetation height and the FHD values by calculating
error values (R?, RMSE, MAE).

Furthermore, GEDI data was not only used for training, but also validating the regressions. To
validate the regressions based on GEDI parameters (RH50, RH100, FHD, AGBD) with GEDI
data, a cross-validation with ten training and matching validation datasets was
instrumentalized. For each of the datasets a regression is modelled and the error values (R?,
RMSE, MAE) are calculated. Later, the average of all ten error values for R?, RMSE and MAE
for each parameter was calculated. Also, an averaged raster based on all ten regressions for

each parameter was computed.

7.2.1. Mean Vegetation Height

Firstly, the regression results using the ALS values as validation data are described (see Table
14). The mean vegetation height based on the ALS data and using cells of the fishnet grid as
trainings samples has R? values between 0.41 and 0.46; RMSE values between 6.78 m and
7.09 m and MAE values between 5.30 m and 5.63 m. Hereby the best accuracy (the highest
R? value and the lowest RMSE and MAE value) was achieved for the method all bands and 4
Orbits both resulting in R>= 0.46, RMSE = 6.78 m and MAE = 5.30 m. For further analysis the
regression modelled with the variable combination all bands is picked. Regressions, that were
based on the ALS data and employing the GEDI plots as training samples, achieve R? values
on a scale of 0.40 to 0.46; the RMSE values reach from 6.91 m to 7.21 m and the MAE results
are located between 5.39 m and 5.73 m. The regression with the best results was the one only
using the ten variables with the “best” negative R correlation (NC) resulting in R? = 0.46, RMSE
= 6.91 m and MAE = 5.39 m. The regressions, that were calculated using the GEDI RH50 as
training data and the ALS mean values as validation data, achieve R? values between 0.36
and 0.39, RMSE values between 7.50 m and 7.68 m and MAE values between 6.05 m and
6.20 m. Hereby there was not one standalone variable combination that could be identified as
resulting in the best accuracy. There were several variable combinations that either produced
better R? or RMSE/MAE values. The regression with the highest R? value (0.39) was the one
using the variable combination NC. The model utilizing the all bands method resulted in the
lowest error values; RMSE = 7.50 m and MAE = 6.05 m. For further analysis the regression
calculated with the variable combination all bands is chosen. One can observe that the
regressions using ALS mean as training data and the fishnet grid cells as training samples
show slightly better results overall, than the regressions using ALS mean as training data and
the GEDI plots as training samples, due to higher R? and lower RMSE and MAE values. In

general, however, the statement can be made, that all regressions, that use the ALS mean
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values as base (training data) have overall better results, than the regressions calculated
based on the GEDI RH50 data.

In Figure 28 the best results for each parameter are portrayed, as well as the reference data
and the deviation of the regressions from the reference data. The deviation is calculated by
subtracting the reference raster from the regression raster. A positive value indicates an
overestimation of the regression, a negative value an underestimation of the regression. The
reference data for ALS mean covers a height range of 0 m — 46 m. The ALS mean regression
(fishnet) stretches over a height range of 0.06 m — 30.60 m, while the ALS mean regression
(plots) achieves height values of 1.21 m — 22.12 m and the RH50 regression (plots) height
values of 2.72 m — 22.63 m. ALS mean (fishnet) predicts the low vegetation heights very well
but underestimates the higher vegetation heights. Both ALS mean (plots) and RH50
overestimates low vegetation heights and underestimated high vegetation heights. The
original height distribution is recognizable in all regressions, but it is noticeable that especially
RH50 greatly overestimates the vegetation height in some clearings. In Figure 29 the
percentual deviation of the best regression results from the reference data for all three
variations is depicted. For the ALS mean regression (fishnet) 74% of the calculated values
showcase a deviation of more than +/- 2 m. Results that have a deviation of more than +/- 4
m amount to 54% and only 14% of the results deviate more than +/- 10 m from the reference
data. The ALS mean regression (plots) has a deviation of more than +/- 2 m for 76% of its
results. For deviations of more than +/- 4 m and +/-10 m it has the same aberrations as ALS
mean regression (fishnet). The RH50 regression deviates more than +/- 2 m for 81 % of its
values. Deviations of more than +/- 4 m amount to 62 % and deviations of more than +/- 10 m
to 16 These results show, that while average heights might be accurate, the local accuracy is

often low.
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Table 14: Validating the regression results for the mean vegetation height Group A. The R4 RMSE and MAE are
calculated for all five variable combinations using the regression results based on the ALS mean (fishnet), the ALS
mean (plots) and the RH50 as predicted values and the original ALS mean values as observed values.

Validation of mean vegetation height with the ALS mean raster

Training samples Validation data RMSE (m) MAE (m)

All bands 0.46 6.78 5.30
Fishnet grid cells 4 Orbits 0.46 6.78 5.30
. Top 10 0.41 7.09 5.63
(fishnet)
PC - - -
NC 0.45 6.86 5.37
ALS mean All bands 0.45 6.96 5.44
4 Orbits 0.45 6.96 5.44
ARV Top 10 0.40 7.21 5.73
(plots) ALS mean raster PC i i i
NC 0.46 6.91 5.39
All bands 0.38 7.50 6.05
All GEDI plots 4 Orbits 0.36 7.59 6.13
(plots) Top 10 0.36 7.66 6.18
PC 0.36 7.68 6.20
NC 0.39 7.53 6.08
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Figure 28: The best regression results for each mean vegetation height parameter using the ALS values as
validation data. The regression for ALS mean using fishnet grid cells as training samples is based on the method
all bands. The ALS mean regression using all GEDI plots as training samples is based on the method NC. The
RH50 regression using all GEDI plots as training samples is based on the method all bands.
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Figure 29: Deviation distribution in percent for the mean vegetation height regressions.
The histograms depict the deviation of the regression results from the ALS mean

Deviation distribution in percent for the RH50 regression validation raster. Negative values on the x-axis are interpreted as an underestimation of
@ (plots) the regression; positive values on the x-axis are interpreted as an overestimation of the
regression. A) Deviation distribution of the ALS mean regression using fishnet grid cells
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The RH50 regressions, that were validated with the original RH50 values through a cross-
validation, show averaged R? values between 0.26 and 0.31; averaged RMSE values between
6.36 m and 6.59 and averaged MAE values between 5.05 m and 5.20 m (see Table 15). It can
be observed, that the R? values are lower, compared to the R? values calculated for the
validation of RH50 with ASL mean. On the other hand, the RMSE and MAE values show a
smaller deviation than the RMSE and MAE values, that were calculated using the ALS mean
as training and validation data. The highest R? and smallest RMSE and MAE values could be
achieved by using the method all bands (R?=0.31, RMSE = 6.36 m, MAE = 5.05 m). Analysing
the percentual deviation distribution for this regression result, the mean regression has a
deviation of more than +/- 2 m for 72% of its predicted values. Furthermore, it has a deviation
of more than +/- 4 m for 47% and a deviation of more than +/-10 for only 8% of its calculated

values (see Figure 30).

Table 15: Validating the regression results for the mean vegetation height Group B. The mean R2 RMSE and MAE
are calculated based on all ten cross-validations of the RH50 regressions for all five variable combinations.

Validation of RH50 regression with GEDI RH50 data
All bands | 40rbits | Topto [ PC__ [ NC_ |

0.31 0.30 0.26 0.26 0.27
RMSE (m) 6.36 6.42 6.57 6.59 6.56
MAE (m) 5.05 5.11 5.20 5.20 5.17

Deviation distribution in percent for the RH50 regression
(cross-validation)

18% I
0,
16% 15%] 1.5
14% 13%
° 1% 17
12%
10% 9% | 10%
8% 7%

6%
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Figure 30: Deviation distribution in percent for the mean RH50 regression (all bands) validated with the GEDI data
via cross-validation.
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7.2.2. Maximum Vegetation Height

In Table 16 the regression results using the ALS values as validation data are described. The
regressions calculated for the maximum vegetation height, using the ALS max values as
trainings data and fishnet grid cells as training samples, have R? values between 0.26 and
0.45. The RMSE values range from 7.76 m to 9.01 m and the MAE values from 6.10 m to 7.24
m. Hereby the best regression is obtained by using the method all bands (R? = 0.45, RMSE =
7.76 m, MAE = 6.10 m). The maximum vegetation height regressions utilizing the ALS max
values as training data and the GEDI plots as training samples, achieve R? values between
0.20 and 0.40; RMSE values between 9.38 m and 10.47 m and MAE values between 7.37 m
and 8.16 m. The best R? and RMSE values were calculated for the method 4 Orbits (R? = 0.39,
RMSE = 9.38 m) and the best MAE values was achieved for the method all bands (MAE =
7.37 m). For further analysis the regression calculated with the variable combination 4 Orbits
is chosen. The regressions calculated by using GEDI RH100 values as training data and GEDI
plots as training samples, but employing the ALS max values as validation data, have R?
values between 0.21 and 0.35, RMSE values between 10.53 m and 11.11 m and MAE values
between 8.23 m and 8.72 m. The best result is achieved with the variable combination 4 Orbits
(R?=0.33, RMSE = 10.53 m, MAE = 8.22 m). Again, the regressions utilizing the ALS values
as training as well as validation data have a higher accuracy, than the regressions utilizing the
GEDI RH100 values for training and the ALS values for validation.

In Figure 31 the best regressions for each parameter are depicted, the reference data and the
deviation of the regressions from the reference data. The reference data for ALS max covers
a height range of 0 m — 50 m. The ALS max regression (fishnet) covers a height range of 0.31
m — 36.24 m; the ALS max regression based on all GEDI plots stretches from 9.85 m to 36.88
m and the RH100 regression reaches from 17.74 m to 38.93 m. ALS max (fishnet) predicts
the low values very well but underestimates the high vegetation heights. ALS max (plots)
overestimates the low values and underestimates the high values. RH100 severely
overestimates the low heights. It also underestimates the higher vegetation heights, even
though it predicts higher values than both ALS max regressions. In Figure 32 it is noticeable
that the ALS max regression (plots) as well as the RH100 regression tend to overestimate,
rather than underestimate its predicted values. One can see that the ALS max regression
(fishnet) has a deviation of more than +/- 2 m for 79 % of its values. Furthermore, 60 % of its
values deviate more than +/- 4 m from the reference data and 21 % deviate more than +/- 10
m. For the ALS max regression (plots) 83 % of its values have a deviation of more than +/- 2
m. Also, 66 % showcase a deviation of more than +/- 4 m and 28 % of more than +/- 10 m.

The RH100 regression has a deviation of more than +/- 2 m for 84 % of its values. Predicted

81



regression values with a deviation of more than +/- 4 m amount to 69 % and with a deviation
of +/- 10 m total 32 %.

Table 16: Validating the regression results for the maximum vegetation height Group A. The R2 RMSE and MAE
are calculated for all five variable combinations using the regression results based on the ALS max (fishnet), the
ALS max (plots) and the RH100 as predicted values and the original ALS max values as observed values.

Validation of max vegetation height with the ALS max raster

Training samples Validation data Method RMSE (m) MAE (m)

All bands 0.45 7.76 6.10
Fishnet grid cells 4 Orbits 0.42 8.01 6.31
(fishnet) Top 10 0.37 8.27 6.59
PC a - -
NC 0.26 9.01 7.24
ALS
4y All bands 0.39 9.43 7.37
4 Orbits 0.40 9.39 7.39
Al ?Elz'tsp)bts ALS max raster  Top 10 0.34 9.68 7.69
o PC 0.20 10.47 8.16
NC 038 9.51 7.48
All bands 0.33 10.56 8.23
4 Orbits 035 10.53 8.23
GEDI RH100 All GEDI plots Top 10 070 L0.83 oy
(plots)
PC 0.21 11.11 8.72
NC 0.28 10.81 8.53
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Figure 31: The best regression results for each maximum vegetation height parameter using the ALS values as
validation data. The regression for ALS max using fishnet grid cells as training samples is based on the method all
bands. The ALS max regression using all GEDI plots as trainings samples is based on the method 4 Orbits. The
RH100 regression using all GEDI plots as trainings samples is based on the method 4 Orbits.

83



12%

10%

8%

6%

4%

2%

0%

12%

10%

8%

6%

4%

2%

0%

Deviation distribution in percent for the ALS max regression

950%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%0%0

(fishnet)

8%

deviation (m)

Deviation distribution in percent for the RH100 regression

(plots)

10%
° 9%

deviation (m)

Deviation distribution in percent for the ALS max regression

(plots)

12%
10%10%

10% Y ——
god | —
8% 8%
8% m

6%

4%

2%

0%

deviation (m)

Figure 32: Deviation distribution in percent for the maximum vegetation height regressions.
The histograms depict the deviation of the regression results from the ALS max validation
raster. Negative values on the x-axis are interpreted as an underestimation of the regression;
positive values on the x-axis are interpreted as an overestimation of the regression. A)
Deviation distribution of the ALS max regression using fishnet grid cells as training samples
and the method all bands; B) deviation distribution of the ALS max regression using the GEDI
plots as training samples and the method 4 Orbits; C) deviation distribution of the RH100
regression using the method 4 Orbits.
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Utilizing solely the GEDI RH100 values for training and validation of the regressions one
achieves R? values between 0.12 and 0.27; RMSE values ranging from 7.51 m to 8.17 m and
MAE values between 6.06 m and 6.61 m (Table 17). The best result hereby is calculated for
the method all bands (R? = 0.27, RMSE = 7.51, MAE = 6.06). The deviation distribution of the
mean regression for all bands presents a deviation of more than +/- 2 m for 79% of all predicted
values. A deviation of more than +/- 4 m can be noted for 56% of the results and a deviation
of more than +/ 10 m for 14% of the predicted values (see Figure 33). Compared to the results
before in Table 16, the R? values are lower, but the RMSE and MAE values are slightly better,
than the RMSE and MAE values for the regressions validated with the ALS data. Indicating
that when training and validating the regressions just based on the GEDI data, the average
deviation between the predicted maximum vegetation height and the actual maximum
vegetation height is lower. On the other side, the predictor variables in the model do not

adequately explain the variations of the maximum vegetation height.

Table 17: Validating the regression results for the maximum vegetation height Group B. The mean R? RMSE and
MAE are calculated based on all ten cross-validations of the RH100 regressions for all five variable combinations.

Valldatlon of RH100 regression with GEDI RH100 data
All bands | 40rbits | Topto [ PC__ [ NC |

0.27 0.23 0.18 0.12 0.15
RMSE (m) 7.51 7.75 7.98 8.17 8.15
MAE (m) 6.06 6.22 6.47 6.55 6.61

Deviation distribution in percent for the RH100 regression
(cross-validation)
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Figure 33: Deviation distribution in percent for the RH100 regression (all bands) validated with the GEDI data via
cross-validation.
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7.2.3. Foliage Height Diversity

Table 18 shows the regression results using the ALS values as validation data for FHD. The
ALS FHD regressions employing the fishnet grid cells as training samples achieve R? values
ranging from 0.22 — 0.35, RMSE values from 0.62 — 0.69 and MAE values from 0.46 - 0.51.
The variation using the ten bands with the highest correlation (Top 70) produces the best
results (R2 = 0.35, RMSE = 0.62, MAE = 0.46). If calculating the regressions for the ALS FHD
values using the GEDI plots as training samples, the R? values range from 0.10 to 0.40, RMSE
values from 0.65 to 0.77 and MAE values from 0.43 to 0.49. The best regression is modelled
by utilizing the variable combination all bands (R? = 0.40, RMSE = 0.65, MAE = 0.43). The
GEDI FHD regressions validated with the ALS FHD values have R? values between 0.22 and
0.31 and RMSE values between 0.93 and 0.95. The MAE values show regardless of the
variable combination very low variability, and all move around the value 0.67. The best result
is achieved, using the method all bands (R? = 0.31, RMSE = 0.93, MAE = 0.67). Hereby it can
also be observed that the regressions, that are trained and validated with the ALS FHD values,
show higher accuracy, than the regressions, that were trained with the GEDI FHD values and
validated with the ALS FHD values. This was to be expected. Generating training and
validation samples from the same dataset usually show smaller deviations than generating
training and validation samples from two different datasets. When validating the first two
models only the deviation between the actual and the predicted values must be considered.
In the case of utilizing GEDI data for training and ALS data for validation there is already a
deviation between the two original datasets that then adds on to the deviation between the
actual and predicted value.

In Figure 34 the best regressions for each variation (ALS fishnet, ALS GEDI, GEDI) are
depicted, as well as the reference data and the deviation of the regressions from the reference
data. The reference data covers a value range of 0.00 to 3.80. The regression calculated
based on the ALS FHD values and employing the fishnet grid cells as training samples predicts
values reaching from 0.27 to 3.11. The regression calculated for the ALS FHD values
employing the GEDI plots as training samples ranges from 1.11 to 3.08. The regression based
on the RH100 values reaches from 2.39 to 3.23. The ALS FHD regression (fishnet) slightly
overestimates low values and underestimates high values. The ALS FHD regression based
on the GEDI plots overestimates the low values a lot more, as well as underestimates the high
values. The GEDI FHD regression overestimates the low values significantly. However, it
predicts the high values slightly better than both ALS FHD regressions. In Figure 35 the
deviation distribution of the regression results from the reference data is depicted in percent.

It is noticeable, that the GEDI FHD overestimates almost all of its predictions, while the ALS
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FHD (fishnet) regression underestimates most of its values. Furthermore, 69 % of the
deviations for the ALS FHD (fishnet) regression are more than +/- 0.2. Also, 43 % of the values
deviate more than +/- 0.4 and only 9 % more than +/- 1.0. The ALS FHD regression (plots)
has an aberration of more than +/- 0.2 for 62 % of its predictions, an aberration of more than
+/- 0.4 for 36 % and an aberration of more than +/- 1.0 for 11 % of its values. The GEDI FHD
regression showcases a deviation of more than +/- 0.2 for 79 % of its values. Deviations of

more than +/- 0.4 amount to 58 % in total and deviations of more than +/- 1.0 to 19 %.

Table 18: Validating the regression results for the FHD Group A. The R4 RMSE and MAE are calculated for all five
variable combinations using the regression results based on the ALS FHD (fishnet), the ALS FHD (plots) and the
GEDI FHD as predicted values and the original ALS FHD values as observed values.

Validation of FHD regression with the ALS FHD raster

Training samples Validation data Method RMSE

All bands 0.32 0.64 0.47
Fishnet grid cells 4 Orbits 0.34 0.63 0.46
(fishnet) Top 10 0.35 0.62 0.46
PC 0.22 0.69 0.51

NC - - -
ALS FHD All bands 0.40 0.65 0.43
All GEDI plots 4 Orbits 0.31 0.68 0.45
(plots) ALS FHD raster 14410 0.40 0.66 0.44
PC 0.10 0.77 0.49

NC - - -
All bands 0.31 0.93 0.67
All GEDI plots 4 Orbits 0.29 0.94 0.67
(plots) Top 10 0.28 0.94 0.67
PC 0.22 0.95 0.67
NC 0.27 0.95 0.67
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Figure 34: The best regression results for each FHD parameter using the ALS values as validation data. The
regression for ALS FHD using fishnet grid cells as training samples is based on the method Top 10. The ALS FHD
regression using all GEDI as trainings samples is based on the method all bands. The GEDI FHD regression using
all GEDI plots as trainings samples is based on the method all bands.
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Figure 35: Deviation distribution in percent for the Foliage Height Diversity
regressions. The histograms depict the deviation of the regression results from the
ALS FHD validation raster. Negative values on the x-axis are interpreted as an
underestimation of the regression; positive values on the x-axis are interpreted as an
overestimation of the regression. A) Deviation distribution of the ALS FHD regression
using fishnet grid cells as training samples and the method Top 10; B) deviation
distribution of the ALS FHD regression using the GEDI plots as training samples and
the method all bands; C) deviation distribution of the GEDI FHD regression using the
method all bands.
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If the regressions are trained and validated with the GEDI FHD values, R? values are between
0.10 and 0.17, RMSE values between 0.36 and 0.37 and MAE values between 0.31 and 0.32
are calculated (see Table 19). There is hardly any variation between the results of the different
variable combinations. But the most effective combinations appear to be all bands (R? = 0.17,
RMSE = 0.36, MAE =0.31) and 4 Orbits (R2 = 0.16, RMSE = 0.36, MAE = 0.31). The deviation
distribution for the mean regression for all bands shows, that 64% of the calculated values
have a deviation of more than +/- 0.2. About 20% have a deviation of more than +/- 0.4 and
only 0.17 % have a deviation of more than +/- 1 (see Figure 36). Compared to the regressions,
that were validated by the ALS data, the R? values are quite low. However, the RMSE and
MAE are lower, which indicates less deviation of the regression model results from the

validation data.

Table 19: Validating the regression results for the FHD Group B. The mean R?2 RMSE and MAE are calculated
based on all ten cross-validations of the GEDI FHD regressions for all five variable combinations.

Validation of GEDI FHD regression with GEDI FHD data
All bands | 40Orbits | Topto | PC__ [ NC |

0.17 0.16 0.14 0.10 0.13
RMSE 0.36 0.36 0.37 0.37 0.37
MAE 0.31 0.31 0.31 0.32 0.31

Deviation distribution in percent for the GEDI FHD regression
(cross-validation)
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Figure 36: Deviation distribution in percent for the FHD regression (all bands) validated with the GEDI data via
cross-validation.
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7.2.4. Aboveground Biomass Density

For the vegetation parameter AGBD the regressions were only trained and validated, based
on the GEDI data. The results for the R? extend over a value range of 0.16 to 0.27, the RMSE
values are located between 88.11 Mg/ha and 94.57 Mg/ha and the MAE values are between
68.51 Mg/ha and 73.59 Mg/ha (see Table 20). The best result hereby is obtained, using the
variation all bands (R? = 0.27, RMSE = 88.11 Mg/ha, MAE = 68.51 Mg/ha). Figure 37 depicts
the averaged regression for all ten regressions calculated based on the method all bands.
When comparing the AGBD regression with the maximum vegetation height reference data
(ALS max validation data) one can see, that high AGBD values overlap with high vegetation
maximum heights. The regression therefore manages to roughly reproduce the horizontal

forest structure across the study area.

Table 20: Validating the regression results for the AGBD Group B. The mean R? RMSE and MAE are calculated
based on all ten cross-validations of the GEDI AGBD regressions for all five variable combinations.

Validation of GEDI AGBD regression with GEDI AGBD data
All bands Top 10
R? -

0.27 0.24 0.16 0.22
RMSE (Mg/ha) 88.11 90.02 94.57 > 91.48
MAE (Mg/ha) 68.51 69.75 73.59 - 70.68
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7.2.5. Regression Results Summary

The results in Table 21 show, that for most parameters the best results were achieved, when
using all bands. For both the ALS max and the RH100 regression using the GEDI plots as
training samples and the ALS max values as validation data the best results were computed
with the combination 4 Orbits. Another exception is the regression calculated with the ALS
mean values as training and validation data and using the GEDI plots as training samples.
Hereby the model utilizing the variable combination NC resulted in the regression with the
highest accuracy. Also, the regression calculated with the ALS FHD values as training and
validation data and the fishnet grid cells as training samples obtains its best result when

working with the variable combination Top 70.

Table 21: Variable combinations achieving the best regression results per parameter and variation.

Validation Method with the best
Training data
data results

ALS mean (fishnet) All bands 0.46 6.78 m 5.30m
ALS mean ALS mean (plots) NC 0.46 6.91m 5.39m
RH50 (plots) All bands 0.38 7.50m 6.05m
RH50 RH50 All bands 0.31 6.36 m 5.05m
ALS max (fishnet) All bands 0.45 7.76 m 6.10 m
ALS max ALS max (plots) 4 Orbits 0.40 9.39m 7.39m
RH100 (plots) 4 Orbits 0.35 10.53 m 8.23 m
RH100 RH100 All bands 0.27 7.51m 6.06 m
ALS FHD (fishnet) Top 10 0.35 0.62 0.46
ALS FHD ALS FHD (plots) All bands 0.40 0.65 0.43
GEDI FHD (plots) All bands 0.31 0.93 0.67
GEDI FHD GEDI FHD All bands 0.17 0.36 0.31
GEDI AGBD GEDI AGBD All bands 0.27 88.11 Mg/ha 68.51 Mg/ha

7.3. Further Analysis

7.3.1. Comparing Regression Results to Field Inventory Data

To determine the deviation of the calculated AGBD values from the measured AGBD values,
the AGBD value of the forest inventory is subtracted from the AGBD value of the regression.
This is done for all five methods except the variable combination PC. It is omitted because the
ten bands for PC are the same as those for Top 70 and therefore produce an identical
regression raster. If a positive result for the calculated deviation is received, the AGBD is
overestimated by the regression. A negative result indicates an underestimation.
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At both stations, the AGBD regressions significantly underestimated the AGBD from the forest
inventory data, especially at station 2900 (see Table 22 and Table 23). At station 700 the
deviations range from ~94 Mg/ha to ~28 Mg/ha and at station 2900 from ~242 Mg/ha to ~177
Mg/ha. For station 700, the smallest deviation with 10% was achieved for the NC method. For

station 2900, the lowest deviation with 43% could be determined for the Top 70 method.

Table 22: Comparison of the AGBD mean regression values with the field inventory data (station 700).

Deviation GEDI AGBD regression values from forest inventory data (station 700)
All bands Top 10

Reference value (Mg/ha) 287.74

AGBD regression (Mg/ha) 228.08 194.07 252.43 - 259.73
Deviation (Mg/ha) 59.66 93.67 35.31 - 28.01
Deviation (%) 21% 33% 12 % - 10%

Table 23: Comparison of the AGBD mean regression values with the field inventory data (station 2900).

Deviation GEDI AGBD regression values from forest inventory data (station 2900)
All bands Top 10

Reference value (Mg/ha) 414.23

AGBD regression (Mg/ha) 172.65 206.15 237.66 - 211.52
Deviation (Mg/ha) 241.58 208.08 176.57 - 202.71
Deviation (%) 58 % 50 % 43 % - 49 %

7.3.2. Analysing the Influence of Study Area Characteristics

The results used for this analysis again only focus on the regressions with the highest
accuracy for each vegetation parameter (see Table 21). For each class of the study area
characteristics a RMSE is calculated.

When analysing the TCD it can be observed that the RMSE values of the mean vegetation
height continuously increase with an increasing TCD for most variations. Only the regression,
which was calculated using the RH50 values as training data and the ALS mean values as
validation data, has a higher RMSE value for the first class (0-25 %) than for the second class
(25-50%). In contrast, for the maximum vegetation height as well as the FHD, the highest
RMSE value mostly corresponds to the lowest TCD class and then decreases continuously.
The RMSE for AGBD also increases with growing TCD values but decreases again for the
TCD class with the highest values (see Figure 39).

For the mean vegetation height, the RMSE values for the no forest and coniferous trees
classes are lower than for the broadleaved trees class, with no forest mostly showcasing the
lowest RMSE values and broadleaved trees the highest RMSE values. The same can be

observed for the AGBD regression results. For the maximum vegetation height and the FHD
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the RMSE values for the no forest class are higher than the other RMSE values and the RMSE
values for the broadleaved trees class usually are the lowest. Hardly any variations can be
observed for the maximum height regression trained and validated with the ALS data using
the fishnet grids as samples, the regression using the RH100 GEDI data as training and
validation data and the FHD regression using the FHD GEDI data as training and validation
data (see Figure 40).

The slope inclination is also divided into four classes (see Figure 41). The mean vegetation
height regressions validated with ALS consistently have their highest error values within the
second class (20°-40°) and the lowest error values within the fourth class (60°-80°). The
RMSE value for the mean vegetation height regression, which is trained and validated with
GEDI RH50 values, shows hardly any variations for the different slope classes. The maximum
vegetation height regressions ALS max (plots) and RH100, both validated with ALS data, and
the RH100 mean regression validated with GEDI data, present higher RMSE values within the
first class (0°-20°). The RMSE values then decrease within the second class (20°-40°) and
then continuously increase with increasing slope inclination. The RMSE values for the ALS
max (fishnet) regression increase continuously with increasing slope gradient. For all FHD
regressions it can be observed that the RMSE values increase with increasing slope
inclination, the only outliers being the RMSE values within the first class (0°-20°) which are
always higher than the RMSE values within the second class (20°-40°). For the parameter
AGBD it can be clearly observed that the RMSE values increase with increasing slope

inclination.
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RMSE (m) distribution of the mean vegetation height for different
Tree Cover Densities (TCD)

RMSE (m) distribution of the maximum vegetation height within
different Tree Cover Densities (TCD)
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Figure 39: RMSE distribution of the four vegetation parameters within different Tree Cover Densities (TCD). Upper left: Mean vegetation height. Upper right: Maximum

vegetation height. Lower left: FHD. Lower right: AGBD.
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RMSE (m) distribution of the mean vegetation height for different
Dominant Leaf Type classes (DLT)

RMSE (m) distribution of the maximum vegetation height for
different Dominant Leaf Type classes (DLT)
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Figure 40: RMSE distribution of the four vegetation parameters for different Dominant Leaf Type classes (DLT). Upper left: Mean vegetation height. Upper right: Maximum
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RMSE (m) distribution of the mean vegetation height for different RMSE (m) distribution of the maximum vegetation height for
slope gradients (°) different slope gradients (°)
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Figure 41: RMSE distribution of the four vegetation parameters for different slope gradients (°). Upper left: Mean vegetation height. Upper right: Maximum vegetation height.
Lower left: FHD. Lower right: AGBD.



7.3.3. Quantitative and qualitative Analysis of the Regression Results based on
four exemplary Plots

To support the analysis of the regression results with field data, four of the visited plots were
selected. Each one of them represent a distinctive forest type (see Figure 42): Old growth
beech forest (plot 6349), mixed forest (plot 1960), monoculture spruce forest (plot 1559) and
young beech forest (plot 1951).

Firstly, the conditions on site were analysed. Further, the available GEDI data for each plot
was compared with the respective values of the regression results, calculated based on the
GEDI data. For each plot the averaged regression value was calculated through Zonal
Statistics. It was analysed how far the predicted values deviated from the measured values. A
negative value thus means that the regression underestimated the original value, a positive
value overestimated it. Only regressions calculated with the variable combination all bands
were employed, considering this method resulted in the lowest error values for each vegetation

parameter as explained in the chapter 7.2.
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Figure 42: Field plots representing different forest types.
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7.3.3.1.  Plot 6349 - Old Growth Beech Forest

Plot 6349 is a prime example of an old growth forest. The study site is dominated by old beech
trees and lying and standing deadwood. The clearing is naturally rejuvenated by young beech
(see Figure 42). The number of layers is classified as two and the vertical structure of the
forest could be described as medium. The plot itself is located at an altitude of 686 m a.s.l.
and has a slope of 30°. The maximum canopy height according to ALS is 37.08 m and 46 m
according to GEDI. The average height for ALS is 25.00 m and 11.08 m for GEDI. The ALS
FHD value is 2.64 and the GEDI FHD value is 2.97. The GEDI AGBD is specified as 288.92
Mg/ha (see Table 28).

The averaged regression value for RH100 is 36.30 m (see Table 24). This is an
underestimation of the GEDI value by 9.70 m or 21%. The RH50 average is 14.57 m. It
overestimates the actual GEDI value by 3.49 m or 31%. The FHD value is 2.86 and
underestimates GEDI by 0.11 or 4%. The predicted ABGD is 245.87 Mg/ha. The initial GEDI
value is underestimated by 43.05 Mg/ha or 15%. Comparing the regression results with the
nDSM in Figure 43, it can be seen, that the horizontal forest structure is roughly depicted by
all four vegetation parameters. A road and river are running through the map from the upper
left-hand corner down to the middle, dividing the forest. Furthermore, a clearing (in this case
a pasture) is also clearly visible in the top right corner of the map. The forest structure itself
can be interpreted as highly structured and heterogeneous based on the nDSM. There are
mostly tall trees, especially in the right field of the map, interspersed with clearings. The image
presented by the nDSM would be consistent with the old growth forest conditions found on
site. In particular, the pasture in the upper right edge of the map is clearly visible in the
regressions AGBD, FHD and RH100. In the regression for RH50, this pasture is not as

prominent, but the river and road are more visible.

Table 24: Deviation of the regression results from the original GEDI data for plot 6349.

6349  |GEDI | Regression | Method |
| Mean | MeanDeviation | Percent | |

AGBD (Mg/ha) JIPELEY 245.87 -43.05 -15%  All bands
2.97 2.86 -0.11 -4% All bands
11.08 14.57 3.49 31% All bands

RH100 (m) 46.00 36.30 -9.70 -21% All bands
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Figure 43: Plot 6349. Top: normalized Digital Surface Model; Upper Left: Above Ground Biomass Density; Upper
Right: Foliage Height Diversity; Lower Left: RH50 (mean vegetation height); Lower Right: RH100 (maximum
vegetation height). The GEDI plots depict the original GEDI values the raster depicts the regression values.
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7.3.3.2.  Plot 1960 - Mixed Forest

Due to its steep slope gradient of 35° located at 1010 m a.s.l., the conditions of Plot 1960 were
only examined by looking down from the official path. The plots vegetation is defined as mixed
forest, consisting of maple, spruce, and ash (see Figure 42). The plot is estimated to be two-
layered and of high vertical structure. The maximum height according to ALS is 21.05 m,
according to GEDI 12.13 m. The mean vegetation height stands at 14.89 m according to ALS
and 1.08 m according to GEDI RH50. The ALS FHD is 2.04 and the GEDI FHD is 2.30. The
GEDI AGBD value is 45.53 Mg/ha (see Table 28).

Furthermore, the regression values are compared to the initial GEDI values (see Table 25).
The predicted average value for RH100 amounts to 27.58 m. Compared to GEDI, this is a
deviation of 15.45 m and therefore an overestimation of 127%. With a deviation of 8.65 m or
801 % the predicted RH50 average value (9.73 m) also overestimates the initial GEDI value
immensely. The FHD value is 2.80 and has a deviation of 0.50 from the GEDI, overestimating
it by 22%. The regression for AGBD shows an averaged result of 153.55 Mg/ha. The original
GEDI value is overestimated by 108.02 Mg/ha or 237%. Analysing the visual depiction of the
regression results with the forest structure given by the nDSM, one can differentiate between
the young, low-growth forest stock on the maps left hand side and the older, high-growth forest
stock on the maps right hand side (see Figure 44). The vegetation parameters RH50, RH100
and AGBD all present lower values on the left-hand side and higher values on the right-hand
side. It is noticeable that this differentiation is not recognizable for the FHD regression.

The calculated “overestimation” is probably in reality not an overestimation at all considering
the height difference between GEDI and ALS, which is probably caused by the steep terrain.
Previous assessments (Adam et al. 2020, 1) have shown that GEDI does not return reliable
results in steep terrain. Comparing the maximum height of ALS (21.05 m) to the regression

(27.58 m), the overestimation is much less.

Table 25: Deviation of the regression results from the original GEDI data for plot 1960.

1960 GEDI |  Regresion | Method |
| Mean____ MeanDeviation |Percent

AGBD (Mg/ha) 45.53 153.55 108.02 237%  all bands
2.30 2.80 0.50 22% | all bands
1.08 9.73 8.65 801%  all bands

RH100 (m) 12.13 27.58 15.45 127%  all bands
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Figure 44: Plot 1960. Top: normalized Digital Surface Model; Upper Left: Above Ground Biomass Density; Upper
Right: Foliage Height Diversity; Lower Left: RH50 (mean vegetation height); Lower Right: RH100 (maximum
vegetation height). The GEDI plots depict the original GEDI values the raster depicts the regression values.
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7.3.3.3.  Plot 1559 - Monoculture Spruce Forest

Plot 1559 is located at an altitude of 1238 m a.s.l., has a slope gradient of 18° and presents
as a typical example of a forest monoculture. The forest consists solely of densely growing,
same age spruce trees with big tree diameters (see Figure 42). It can be estimated that the
trees reach a height of 30 m. The crown base height is about halfway up the trees at
approximately 15 m height above ground. Further, abundant lying and standing deadwood is
present. The number of layers is estimated to be 1, the vertical structure can be classified as
lightly structured. The top vegetation height measured by ALS is 29.36 m and by GEDI RH100
34.04 m. The mean vegetation height is 18.07 m according to ALS and 17.04 m according to
GEDI. The FHD value calculated based on the ALS data presents a value of 2.80. GEDI
provides a FHD value of 3.30. The GEDI AGBD value is 253.80 Mg/ha (see Table 28).

Table 26 presents the regression results. The average RH100 is 30.67 m, resulting in a
deviation of -3.37 m to the original GEDI value. The original GEDI value is thus underestimated
by 10%. The calculated RH50 value is 11.53 m and underestimates the actual GEDI value by
5.51 m or 32%. The predicted FHD value is 2.89 and underestimates the baseline value by
0.41 or 13%. The average AGBD value is 201.53 Mg/ha. Thus, it underestimates the original
GEDI value by 52.26 Mg/ha or 21%. If one compares the nDSM with the regression results
(see Figure 45), the forest area stands out clearly from the surrounding alpine meadows for
all four parameters. It is noticeable that in the AGBD regression forest and meadow can be
clearly distinguished. However, the AGBD values for the forest are too low. Also, the FHD is
certainly too high for a simple one-layered stand. However, the deadwood could influence the
FHD value. Further, the comparison of ALS and GEDI heights indicate, that the GEDI values

are not very accurate in this difficult terrain.

Table 26: Deviation of the regression results from the original GEDI data for plot 1559.

1559 GEDI | Regression | Method _

______ Mean | MeanDeviation |Percent | |
253.80 201.53 -52.26 -21% all bands
33 2.89 -0.41 -13% all bands

17.04 11.53 -5.51 -32% all bands

RH100 (m) 34.04 30.67 -3.37 -10% all bands
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Figure 45: Plot 1559. Top: normalized Digital Surface Model; Upper Left: Above Ground Biomass Density; Upper
Right: Foliage Height Diversity; Lower Left: RH50 (mean vegetation height); Lower Right: RH100 (maximum
vegetation height). The GEDI plots depict the original GEDI values the raster depicts the regression values.
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7.3.3.4.  Plot 1951 - Young Beech Forest

Plot 1951 is located at an altitude of 762 m and has a relatively steep slope with 33°. It is
characterized by beech forest that mostly consists of young trees (see Figure 42). Two or
three older beech trees are present, as well as a few young spruce trees. Basically, the plot
shows a high level of structuring, but no distinct layers. The number of layers is estimated to
be multi-layered. The vertical structure is estimated to be highly structured. The top vegetation
height for ALS is 38.15 m and for GEDI 25.7 m. According to ALS, the mean vegetation height
amounts to 19.75 m and according to GEDI it is 10.15 m. The ALS FHD value is 2.55 and the
GEDI FHD value is 2.92. For AGBD GEDI presents a value of 145.55 Mg/ha (see Table 28).

Table 27 compares the GEDI data with the regression values. For RH100 the average value
30.98 m is calculated. This overestimates the GEDI value by 5.28 m or 21%. The predicted
average value for RH50 is 13.02 m. The result deviates from the GEDI baseline value by 2.82
m and thus overestimates it by 28%. The average value of 2.83 is predicted for FHD,
underestimating the initial GEDI value by 0.09 or 3%. For AGBD the average value 203.98
Mg/ha is calculated. The predicted value overestimates the original GEDI value by 58.43
Mg/ha or 40%. Visually comparing the regression results for the four parameters with the
nDSM shows that the forest structure is very roughly depicted (see Figure 46). For all four
parameters, fine differences between forest areas with high and low vegetation can be noticed.
The low RH50, RH100 and AGBD values assigned to the upper right corner of the map fit the
low vegetation height depicted by the nDSM. The FHD regression only predicts low values for
forest areas with very low vegetation heights. The older beech forest in the lower half of the
map has higher RH50, RH100, AGBD and FHD values. The small clearings within the tall
stand are also recognizable trough lower RH50, RH100, AGBD and FHD values.

Table 27: Deviation of the regression results from the original GEDI data for plot 1951.

1951 GEDI | Regresion | Method

I _Mean _____ MeanDeviation | Percent |
AGBD (Mg/ha) 145.56 203.98 58.43 40% all bands

2.92 2.83 -0.09 -3% all bands
10.15 13.02 2.87 28% all bands

RH100 (m) 25.70 30.98 5.28 21%  all bands
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Figure 46: Plot 1951. Top: normalized Digital Surface Model; Upper Left: Above Ground Biomass Density; Upper
Right: Foliage Height Diversity; Lower Left: RH50 (mean vegetation height); Lower Right: RH100 (maximum
vegetation height). The GEDI plots depict the original GEDI values the raster depicts the regression values.
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8. Discussion

8.1. Vegetation Height

The mean vegetation height shows a moderate to strong positive correlation with vegetation
indices that are calculated using the vegetation red edge bands (NDVI6, NDVI7, NLVI) and
the NIR (EVI, NDVI, NDVI8a, SAVI). Among them the mean band of the NDVI6 for the ALS
mean (fishnet) and the median band of the NLVI for the ALS mean (plots) and RH100 (plots)
achieve the strongest correlation values; R¥R = 0.38/0.61, R¥R = 0.41/0.64 and R¥R =
0.16/0.41 respectively. Also, the mean band of the NDVI6 as well as the median band of the
NLVI appear to be among the most contributing variables for the mean vegetation height,
reaching a feature importance of up to 71% and 40% respectively. Compared to the mean
vegetation height the correlation values between the maximum vegetation height and the
Sentinel variables are lower. But like the other parameter the maximum vegetation height
shows positive weak to moderate correlations with vegetation indices that are calculated using
the vegetation red edge bands (NDVI6, NDVI7, NLVI) and the NIR (NDVI8a, EVI). The highest
R? value for the maximum vegetation height (ALS fishnet) was achieved for the mean band of
the NDVI6 resulting in R¥R = 0.25/0.50. Other studies that had directly comparable examples
for the correlation between the mean or maximum vegetation height and vegetation red edge
based indices such as NDVI6, NDVI7 or NLVI could not be found. Most utilized more common
indices such as the NDVI, EVI or SAVI (Fagua et al. 2019, Pascual et al. 2010, Liu et al. 2019).
Fagua et al. (2019) for example observed the correlations between the canopy height (RH98)
and the NDVI and EVI, with the best results being R = 0.56 and R = 0.66 respectively. Our
results showed a slightly weaker correlation between the mean band of the NDVI and the
maximum vegetation height (ALS max (fishnet): R = 0.47, ALS max (plots): R = 0.34, RH100
(plots): R = 0.22) as well as the mean vegetation height (ALS mean (fishnet): R = 0.58, ALS
mean (plots): R = 0.57, RH50 (plots): R =0.37) (see Table 10, Table 11 & Table 13). The
correlation values between the mean band of the EVI and the mean vegetation height were
slightly stronger (ALS mean (fishnet): R = 0.61, ALS mean (plots): R = 0.60, RH50 (plots): R
= 0.40), for the maximum vegetation height slightly weaker (ALS max (fishnet): R = 0.47, ALS
max (plots): R = 0.30, RH100 (plots): R = 0.21) (see Table 10, Table 11, Table 13 & Table
34). Another study that also observed the correlation between the mean vegetation height and
the NDVI was Pascual et al. (2010), their strongest correlation resulting in R = 0.73. Even
though no direct comparison could be found for the correlation or feature importance of
vegetation red edge based indices, most studies noted that adding vegetation red edge indices
did improve their results. Li et al. (2020) discovered that the red edge NDVIs contributed the
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most when estimating the forest canopy height (RH95), next to the texture variable contrast of
the NDVI or the VV backscattering coefficient. Xi et al. (2022) also discovered that one of the
most important variables when mapping the forest canopy height was the NDVI_B86 and the
NDVI_B8a7, calculated “(B8-B6)/(B8+B6)” and “(B8a-B7)/(BA+B7)". Other vegetation red
edge indices were the RENDVI a (“(B5-B4)/(B5+B4)”) and the RNDVI b (“(B6-B5)/(B6+B5)”)
utilized by Jiang et al. (2021), achieving a feature importance of ~7% and ~6% respectively,
when estimating the forest canopy height (RH98). Another variable that played an important
role in predicting the mean vegetation height in our study was the mean and median band of
the red band (B4), the highest feature importance amounting to 23% and 26% respectively
(see Figure 20). The red band (B4) had a weak to moderate negative correlation to the mean
vegetation height (ALS mean (fishnet): R = -0.57, ALS mean (plots): R= -0.56, RH50 (plots):
R =-0.32) as well as the maximum vegetation height (ALS max (fishnet): R=-0.50, ALS max
(plots): R = -0.42, RH100 (plots): R = -0.26) (see Table 10, Table 11 & Table 13). But when
predicting the maximum vegetation height the red band (B4) only contributed little. The most
important bands appeared to be the mean and median band of the green (B3) and first
vegetation red edge (B5) band, achieving feature importance values of up to 30% (B3_med)
or 54% (B5_med) (see Figure 22). These results agreed with the median green band (B3) and
the median first vegetation red edge band (B5) recording the highest correlation results with
the maximum vegetation height (ALS max (plots) & RH100 (plots)), resulting in R¥R = 0.20/-
0.45 and R%R = 0.08/-0.28 respectively (see Table 13). Other studies also observed that the
S2 B3 and B5 played an important role in predicting the canopy height. Perez et al. (2022)
discovered that the B5 is quite relevant for the mean vegetation height (R* = 0.21) as well as
the maximum vegetation height (R? = 0.18). Hallik et al. (2019) also observed a negative
correlation between the average vegetation height and the first vegetation red edge band (B5)
and the green band (B3), R =-0.30 and R = -0.45 respectively. For Liu et al. (2019) the B3 is
one of the most important variables in the RF model when mapping the canopy height
achieving a feature importance of ~18%. Gao et al. (2019) also observed a strong negative
correlation between the natural vegetation height and the reflectivity of green light bands,
resulting in R = -0.86. The reflectivity in the green band, red band, vegetation red edge bands
or NIR bands is directly related to the chlorophyll content of the vegetation. Chlorophyll shows
strong absorption in the red band and reflection in the green, vegetation red edge and NIR
bands. Studies have shown that with increasing tree height the chlorophyll content decreases.
Rajsnerova et al. (2015) found a decrease in total chlorophyll content in the upper canopy
leaves of beech trees. Raim et al. (2012) observed that needles of taller Norway spruce trees
had a lower mass-based chlorophyll concentration. Furthermore, taller/older trees have a

higher dry mass per area and volume than younger trees (Raim et al. 2012, 3). This would

111



explain the negative correlation between the S2 bands and the mean and maximum vegetation
height.

Furthermore, both the mean and the maximum vegetation height have a weak to very weak
correlation with all S1 backscatter and texture variables. But, when analysing the feature
importance, it was apparent, that S1 variables did contribute to the prediction of the mean and
maximum vegetation height. Especially the textural mean and standard deviation band of the

VH polarisation.

The best regression results for the mean vegetation height as well as the maximum vegetation
height (see Table 21) regarding the RMSE and MAE values were in both cases achieved by
using the GEDI data as training and validation datasets. Resulting in the values RMSE = 6.36
m and MAE = 5.05 m for the mean vegetation height and RMSE = 7.51 m, and MAE = 6.06 m
for the maximum vegetation height, but only achieving R? values of 0.31 and 0.27 respectively.
The highest R? values were calculated for the regressions utilizing the ALS data as training
and validation dataset and the fishnet grid cells as training samples. For the mean vegetation
height, the R? = 0.46, and for the maximum vegetation height the R? = 0.45. Compared to other
studies our regressions are a lot less accurate. Calculating the canopy height Li et al. (2020)
achieved results of R = 0.78 and RMSE = 2.64 m for their DL model and a R = 0.68 and RMSE
= 2.93 m for their RF model. It must be noted though that Li et al. (2020) use a far lower
resolution of only 250x250 m per pixel. Although they conduct this study for a fairly large area
(2773 km?) with challenging topography (elevation ranging from 585 to 1230 m) their results
are better probably because extreme values are averaged over the larger pixel size. Our
regression results have shown that values at the extreme upper or lower end of the value
spectrum are typically underestimated or overestimated (see Figure 28 & Figure 31). Torres
de Almeida et al. (2022) also assess the potential of S1 and S2 satellite data to model the
canopy height. The highest accuracy was obtained when using the RF algorithm and 20 m
resolution features only from the S2 data (R?=0.58, RMSE = 4.92). Airborne LIiDAR data was
used for training (100 samples) the algorithm and the cross-validation (28 samples). Most of
the models performed better when using S1 and S2 data with a 20 m instead of a 10 m
resolution. Furthermore, the study was conducted in the Atlantic Forest of Parana, Brazil,
which is mostly characterized by flat terrain. One study presenting good regression results
with high resolution (10x10m per pixel) for large areas with challenging terrain is the one
conducted by Lang et al. (2019). They utilized S2 data to estimate the vegetation height with
a Convolutional Neural Network (CNN) for the two study areas Gabon and Switzerland. For
validation LVIS LIiDAR data and an already existing canopy height model are used. For
Switzerland a MAE of 1.7 m and a RMSE of 3.4m was calculated, and for Gabon, the MAE

was 4.3 m and the RMSE 5.6 m. Another study that is very comparable to ours is Kacic et al.
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(2023) combining S1 and S2 imagery with GEDI samples to assess the wall-to-wall forest
canopy height (RH95) at a 10 m resolution for the whole of Germany. Resulting in a R? = 0.65,
a MAE = 4.4 m and a RMSE = 6.6 m. In our study we utilize the RH100 instead of the RH95
values as stand in for the canopy height. This could be a reason why the RMSE and MAE
values for the regressions trained and validated by the GEDI data are larger compared to the
results of Kacic et al. (2023). Furthermore, our R? values were a lot lower, the highest being
R? = 0.27. An explanation for this can be Kacic et al. (2023) utilizing 10000 (train: 70%; test:
30%) GEDI samples per model compared to our 1156 GEDI samples in total.

8.2. Foliage Height Diversity

Overall, the green band (B3) and the first vegetation red edge band (B5) seem to have the
highest correlation values with the FHD based on GEDI as well as ALS data. The strongest
correlation values were calculated between the ALS FHD (fishnet) and the median and mean
band of the first vegetation red edge band (B5) and the median and mean band of the green
band (B3), resulting in R¥R=0.27/-0.52, R?*/R = 0.26/-0.51, R?/R = 0.22/-0.47 and R?*/R = 0.22/-
0.47 (see Table 12) respectively. When analysing the feature importance, it is noticeable that
the median green band (B3) and the mean and median first vegetation red edge band (B5)
are contributing the most, achieving values of up to 24%, 30% and 35% respectively (see
Figure 24). Similar to the vegetation height the FHD has very weak to weak correlations with
the S1 data overall. Still the method all bands adds GLCM standard deviation bands of the S1
VH146, VH44 and VV44 . The standard deviation band of the VH44 even achieving a feature
importance of 11% for the GEDI FHD regression. No direct comparison with other studies
considering the correlation between S1 and S2 data and the FHD could be made. Further
analysis shows a weak to moderate correlation between the FHD and the mean vegetation
height (ALS: R=0.39, GEDI: R=0.58) and a moderate to strong correlation between the FHD
and the maximum vegetation height (ALS: R=0.54, GEDI: R=0.72). This can explain why the
FHD shows similar correlations for the S1 and S2 data.

The FHD regression (see Table 21) with the lowest RMSE (0.36) and MAE (0.31) values was
calculated using the GEDI data for training and validation. The FHD regression with the
highest R? (0.40) value was calculated using the ALS FHD data for training and validation and
the GEDI plots as samples. There are very few studies projecting FHD values to a larger area
by combining them with satellite multispectral and SAR data. Lee et al. (2020) for example
estimate the forest vertical structure. The data on the vertical structure is collected through a
field survey and combined with multi-seasonal optical satellite imagery and topographic data.

Hereby the vertical structure is presented in the form of three classes: single layer, double
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layer, and triple layer. The FHD index would allow a more nuanced assessment of the vertical
structure. Other researchers try to utilize FHD as an input variable to model the forest diversity
for example Ren et al. (2023). The study aims to characterize forest tree species diversity by
using GEDI LiDAR data and S2 imagery. The FHD index turned out to be one of the most
important variables. Kacic et al. (2021) investigated the wall-to-wall mapping of the FHD. They
assessed the vegetation structure characteristics for the complete Paraguayan Chaco an area
of 240000 km? (or 24000000 ha) by fusing S1, S2 and GEDI data. 700000 filtered GEDI
samples were used to train (90%) and validate (10%) the maps modelled not only for FHD,
but also PAI, canopy height and total canopy cover. The FHD regression achieved a mean R?
= 0.47 and a median R? = 0.48, the RMSE and MAE resulted in 0.3 and 0.2 respectively. The
RMSE and MAE results are comparable to our values for the regressions trained and validated
with GEDI. Kacic et al. (2021) possibly managed to achieve slightly better results by modelling
the FHD values in a very flat and homogenous terrain that is characterised by forests with low
heights and a low vertical structure and by using the spatial resolution 30x30 m. Furthermore,
our R? value estimated for the regression trained and validated with GEDI only resulted in

0.17. This could be due to Kacic et al. (2021) utilizing a much larger dataset.

8.3. Aboveground Biomass Density

The AGBD GEDI values have their highest correlation with the median band of the NLVI (R?
= 0.11/R=0.33), followed by the minimum (R?=0.10/R=0.31) and mean (R?*=0.09/R=0.31) band
of the NDVI6 (see Table 13). Similarly, to the vegetation heights and the FHD, the AGBD only
has very low R? values ranging from 0.00 to 0.03 for the correlation between S1 data and
AGBD (see Table 34). Debastiani et al. (2019) also had results that showed a very poor
correlation between S1 backscatter values and the AGB, but still demonstrated, that the use
of the GLCM texture variables led to an improvement in AGB estimates. This can also be
observed for our study. Only employing the 10 variables with the best correlation (Top 10) to
calculate the AGBD regressions results in a mean R? of 0.16. While utilizing the method all
bands results in a mean R? of 0.27 (see Table 20). When analysing the feature importance of
the used variables between the method Top 10 and all bands (see Figure 26) the mean band
of the NDVI6 is the feature with the highest importance in both cases, 39% and 20%
respectively. The method Top 70 attributes the second and third highest feature importance
to the minimum band of the NDVI6 (16%) and the median band of the NLVI (12%). The method
all bands shows the second highest feature importance for the GLCM standard deviation band
of the VH44 (17%) (see Figure 26), indicating, that the addition of S1 texture data resulted in

an improvement of the regression results. Another variable with a high feature importance
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(12%) is the mean band of the red band (B4). Wang et al. (2023) yielded a similar feature
importance (12.93%) for the red band when estimating the AGB for mixed broadleaved and
pine forest in the northeast of China. They also had the NDVI ranked as one of the most
contributing variables with a feature importance of 10.14%. Overall, the only feature the
method Top 10 and all bands have in common is the NDVI6, matching with the knowledge,
that the NDVI has been proven to be an essential variable in estimating forest parameters
(Wang et al. 2023, 9).

The deviation of the ALS derived AGBD values from the GEDI values were quite significant.
Therefore, we could not compare the regressions based on space-borne with air-borne AGBD
values. These circumstances prevented the analysis of the predicted AGBD data for the whole
study area and limited it to the GEDI plots. It is therefore questionable how meaningful the
results of the AGBD regressions are. Nevertheless, it was possible to undertake a cross-
validation with the GEDI data, achieving its best results for the method all bands with R? =
0.27, RMSE = 88.11 (Mg/ha) and MAE of 68.51 (Mg/ha).

Compared to other studies the regression results of this study proved to be a lot less accurate
(see Nandy et al. 2021, Liu et al. 2019, Debastiani et al. 2019). Nandy et al. (2021) were able
to predict the forest AGB with R* = 0.68 and RMSE = 25.18 Mg/ha using a RF model consisting
only of spectral variables. When incorporating forest height information into the model the
results improved (R? = 0.83 and RMSE = 19.98 Mg/ha). Liu et al. (2019) calculated the AGB
using three RF models for the forest types of coniferous forest, broadleaved forest and mixed
forest. The results demonstrated, that the three AGB estimation models performed better
separately than the model built by grouping them all together, resulting in R?= 0.42 and RMSE
= 31.02 Mg/ha. The best results were achieved for the broadleaved forest model with Rz =
0.74 and RMSE = 23.40 Mg/ha, followed by the coniferous forest model with R? = 0.74 and
RMSE = 24.21 Mg/ha and the mixed forest model with R? = 0.69 and RMSE = 24.14 Mg/ha.
In addition to the spectral vegetation indices derived from S2, Liu et al. (2019) included
biophysical variables (LAI, fraction of vegetation cover etc.), topographic variables (aspect,
slope etc.) and the forest stand mean height derived from S1 into the models to estimate the
AGB. Debastiani et al. (2019) estimated the AGB for tropical forests using three variable
combinations (treatments) and 12 machine learning algorithms. The first treatment utilized the
backscatter of the S1 VV and VH polarisation. The second treatment added S1 textural
metrics, and the third treatment added S2 bands and derived vegetation indices. The results
for most of the 12 algorithms improved, when more variables were added. For each of the
three treatments the Robust Regression model (58.03 — 57.76 — 47.66 Mg/ha) achieved the
best and the Random Tree model (83.65 — 85.37 — 71.00 Mg/ha) the worst results. The results
of the RF model (63.89 — 62.40 — 50.30 Mg/ha) are in the middle field, compared to the other

results.
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It is noticeable that the other studies, despite using significantly less training and validation
data for larger areas, still achieve better results. Even though the AGBD results are presented
at the same high spatial resolution (10x10 m) as our results (Nandy et al. 2021; Liu et al.
2019). Only Debastiani et al. (2019) use a lower spatial resolution of 100x100 m. Our study
uses a cross-validation with a training dataset of 1041/1040 plots and a validation dataset of
115/116 plots to calculate the AGBD for an area of 5600 ha. In comparison Nandy et al. (2021)
estimate the AGB for an area of 145600 ha using 100 plots for training and 30 plots for
validation. While Liu et al. (2019) use 28 plots for broadleaf, 33 plots for coniferous and 18
plots for mixed forest validation for an area of 3901700 ha. Debastiani et al. (2019) also only
use 286 plots in total for training and validation. This discrepancy can eventually be connected
to the more challenging nature of our study area, that encompasses a height range of ~1260
m and a median slope gradient of 32°. The other studies are conducted in completely flat
terrain (Debastiani et al. 2019, 111), undulating (Nandy et al. 2021, 2) or hilly terrain (Liu et al.
2019, 3). Also, Debastiani et al. (2019) utilize airborne LIDAR data to calculate the AGB
values, while Nandy et al. (2021) as well as Liu et al. (2019) employ field data to calculate the
AGB. Both data sources would deliver very accurate information. Especially the collected field
data would not be affected by error values within the original dataset, due to a high slope
inclination. Furthermore, it must be noted that a lower RMSE value does not necessarily
indicate a better result. Debastiani et al. (2019) demonstrated in their study that the random
tree model resulted in the lowest RMSE values but represented the variability of the AGB
values best.

Analysing the AGBD regression visually, it can be seen from Figure 37 that the AGBD value
distribution corresponds to the vegetation height. It can be observed that low AGBD values
prevail in areas that are known to be alpine pastures, whereas higher AGBD values
predominate in areas with higher vegetation heights. This statement is supported by the
correlation coefficient R calculated between the AGBD regression (all bands mean) and the
mean and maximum vegetation height based on the original ALS data and the GEDI
regressions. The correlation between AGBD and ALS mean and max, results in R = 0.57 and
R = 0.55 respectively, showing a moderate correlation. While calculating the correlation
between AGBD and the RH50 and RH100 regression results in R = 0.89 between AGBD and
the mean height, and R = 0.88 between AGBD and the maximum height, showing a very
strong correlation.

In order not to rely solely on the cross-validation, a comparison between the mean AGBD
regression (all bands) and global biomass maps is also used. Since the free access to biomass
maps is limited, the reference data utilized has a significantly larger resolution or an earlier
recording date. The Global Forest Biomass Map (GEOCARBON) from Wageningen University

(Avitabile et al., 2016) is compared to our results. Its most recent status is 2016, it has a
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resolution of 1.11x1.11 km per pixel and indicates the biomass in the unit Mg/ha. Furthermore,
a biomass map from the CEDA archive is employed (Santoro et al. 2023). It has been recorded
in 2020, has a resolution of 100x100 m per pixel and uses the unit Mg/ha. The GEOCARBON
map shows a value range of 97.01 - 234.74 Mg/ha and has a mean value of 181.49 Mg/ha
and a median value of 185.10 Mg/ha for the study area. The CEDA map has a value range of
0.00 - 468.00 Mg/ha, a mean value of 287.75 Mg/ha and a median value of 313.00 Mg/ha
within the study area. Our mean AGBD regression covers a value range of 82.55 - 327.71
Mg/ha and has a mean value of 194.18 Mg/ha and a median value of 196.02 Mg/ha. The
predicted AGBD values are therefore within a realistic range for the study area. But the
different value distributions within the two reference datasets makes it difficult to conduct a
clear assessment regarding the quality of our AGBD map.

Additionally, a comparison was made with field data collected at the monitoring stations in the
Zdbelboden. This, however, was limited to an extremely small areal and only the values of
one pixel are compared with the measured data per station. Although this enables an
interesting comparison, it can by no means be used to determine the quality of the regression.
Also, since the surveys are located outside the study area, no comparison can be made with
the measured GEDI or ALS data, only with the regression results. It is still noticeable that the
station (700) (see Table 22) located within mixed/beech forest achieves a higher accuracy
than the station (2900) (see Table 23) located within the coniferous forest. The influence of
the forest type on the regression results was further investigated in chapter 7.3.2. and chapter
8.6.

8.4. Correlation Summary

When analysing the correlation results for the different vegetation parameters the following

observations could be made:

1) The strongest correlations were recorded for S2 bands and Vis.
2) All vegetation parameters had weak or very weak correlations with S1 backscatter and

texture variables.

The variables with the highest positive and negative correlation values often overlap between
the different vegetation parameters, especially between the mean vegetation height and the
AGBD and the maximum vegetation height and the FHD. The highest R? results for the mean
vegetation height and the AGBD were quite similar. The mean vegetation height and the
AGBD both had their strongest R? results for the median band of the NLVI (AGBD: R?/R=
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0.11/0.33; ALS mean (plots): R?R = 0.41/0.64). Other variables that frequently achieved high
correlations were the EVI and particularly the NDVI6. The mean and maximum vegetation
height also showed strong correlations with similar VIs when utilizing the fishnet grid for the
value extraction. Both had their highest R? value for the mean band of the NDVI6 (Mean: R#R
= 0.38/0.61; Max: R?*R = 0.25/0.50). When utilizing the GEDI plots the highest correlation
values achieved for the maximum vegetation height differed significantly from those of the
mean vegetation height. Like the FHD the maximum vegetation height showed a noticeable
correlation to S2 multispectral bands such as B3, B4 and B5. The variables with the highest
correlation generally also showcased the highest feature importance when calculating the
models. For the maximum vegetation height and the FHD the B3, B4 and B5 contributed the
most and for the AGBD and the mean vegetation height the B4 and NDVI6 were most
important. The NLVI was also quite significant for the mean vegetation height. As previously
discussed in chapter 8.1, the significance of B3, B4 and B5 for the vegetation parameters can
be explained by the spectral properties of chlorophyll. Furthermore, it is noticeable that Vs
utilizing red edge bands (NDVI6, NLVI) have significant correlations with the vegetation
parameters and play an important role in predicting them. The red edge region is defined as
the spectral region between the wavelengths 680 and 750 nm where there is a sharp change
in the vegetation reflectance (Xie et al. 2018, 2). Chrysafis et al. (2017) compared S2 and
Landsat 8 data in the mapping of growing stock volume in a Mediterranean forest. They found
that using the S2 RE1 band instead of the NIR band improved the accuracy of the results, but
only marginally. Astola et al. (2019) also compared the performance of S2 and Landsat 8 data
for forest variable prediction in the boreal forest of Southern Finland for the mean tree height.
They found that the first vegetation red edge band (B5) was the best predictor, followed by the
second vegetation red edge band (B6). Generally, the S2 data outperformed the Landsat 8
data and models utilizing the S2 variables without the red edge bands performed 1.6% worse
on average than models using all S2 image bands. Further studies also demonstrated the S2
vegetation red edge bands and Vls with red edge bands improved the accuracy of vegetation
parameter predictions (Perez et al. 2022, Li et al. 2020, Chen et al. 2021). Furthermore, it can
be observed that the mean and the median temporal statistics bands have the highest
correlation and feature importance values for all vegetation parameters. Indicating that these
are the most significant temporal statistic aggregations to summarize the reflectance of the

Sentinel data within the given time periods.

For all vegetation parameters the S1 backscatter, and texture variables show only a weak to
overwhelmingly very weak correlation. A reason for this can be the very complex topography
of our study area. It is known that geometric distortion is an inherent error of SAR images

because of side-looking geometry and topographic relief. Mountainous terrain is known to
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cause foreshortening, layover, and shadows (Chen et al. 2018, 1). Still, when analysing the
used features and feature importance of models employing the band compositions all bands
and 4 Orbits, S1 derived variables are also employed. Especially the mean and standard
deviation texture bands of the cross-polarisation VH, which sometimes reached quite high
feature importance values, such as 16 % (see Figure 27) or even 19 % (see Figure 22). Models
utilizing the band combinations all bands or 4 Orbits generally perform better (see Table 21),
indicating that adding the texture variables can improve the results. Other studies made similar
observations, such as Chen et al. (2021) when combining field samples, GEDI, S1 and S2
imagery to estimate the forest stand volume. Within their study the correlation coefficient R
only showed a weak to very weak correlation between the stand volume and S1 backscatter
and texture variables. Nevertheless, the texture characteristics of the SAR imagery turned out
to be very beneficial for the volume estimation. However, they discovered that the overall
influence of SAR backscatter was marginal. They also concluded that the texture features
from VV were more relevant than those from VH, contrary to our study. Debastiani et al. (2019)
also employed S1 data with VV and VH polarisation to estimate the AGB. The results show
that S1 backscatter values were poorly correlated with the AGB, but the use of the GLCM
texture led to an improvement in AGB estimates by most algorithms. Overall, the addition of
texture and optical data provided a noticeable improvement (3%) over models with SAR
backscatter only. Another option would be to use SAR data with longer wavelengths (e.g. L
and P) instead. They can penetrate the forest canopy and capture the backscatter from
branches and trunks making them more sensitive towards the vertical forest structure.
Compared to them the short wavelength C-band backscatter that is provided by S1 only has
limited ability to capture the vertical structural information of forests (Sothe et al. 2022, 14).
Other studies have utilized them and achieved promising results regarding their estimation
power. When combining LiDAR data with S1 and S2 data to estimate the AGB, Guerra-
Hernandez et al. (2022) concluded, that the S1 SAR C-band polarisation had only a limited
effect on the RF model accuracy showing a feature importance of < 6.5%. The
ALOS2/PALSAR2 L-band data, which they included in the study, had a much higher
importance for predicting the AGB. Three of the top 5 predictors were L-band derived
backscatter information. Sothe et al. (2022) also compared SAR C-band to L-band data when
estimating the canopy height and the AGB, coming to the same conclusion. They also
discovered in their study that the cross polarized data (VH) from both SAR sensors were more
important than co-polarized data (VV), similar to our study. The cross polarized data indicates
the volumetric scattering from vegetation related to tree leaves and branches, while co-
polarized is mainly indicative of double bounce scattering associated with tree trunks, buildings

or inundated vegetation.
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Moreover, quite often the VH polarisation of the ascending orbit 44 is attributed with the
highest feature importance compared to other GLCM features. Futhermore, it is used most

often, followed by the descending orbit 22.

8.5. Regression Summary

Examining and comparing our results with other studies showed that the accuracy of our
regressions was mostly smaller for all four vegetation parameters (mean and maximum
vegetation height, FHD, AGBD). Explanations for this can be:

1) High spatial resolution of the modelled regressions.

2) Complex terrain of the study area.

3) Complex vegetation structure.

Other studies often used lower spatial resolutions compared to the 10 m resolution of our
results. Torres de Almeida et al. (2022), Potapov et al. (2021), Debastiani et al. (2019) or
Sothe et al. (2022) for example modelled vegetation parameters with the spatial resolutions
20 m, 30 m, 100 m or 250 m respectively. A high spatial resolution offers the advantage of
capturing more details, while low spatial resolutions often produce biases due to the large
pixel size. Less common surface features are often underestimated, causing a negative bias,
and more common components can be overestimated, causing a positive bias (Haack & Rafter
2010, 71). But a high spatial resolution image will not always lead to a better interpretation.
Coarse resolution images sieve out unnecessary details and offer a certain level of
generalization, when interpreting the image for a large area (Mahavir 2000, 127). When
predicting for example the vegetation height for a resolution of 250 m, within these ~6 ha of
forest a wide range of canopy height can be included, due to a difference in tree age and
disturbance histories that are all aggregated into one pixel (Sothe et al. 2022, 14). Extreme
outliers are therefore erased from the dataset and more “averaged” values are presented.

Other studies also utilize the spatial resolution 10 m, for example Nandy et al. (2021), Kacic
et al. (2021) or Liu et al. (2019). But their study areas were situated in flat or undulating terrain
and did not have the same topographic complexity as our study area. There the slope
inclination ranged from 0° to 89° with a median gradient of 32°. On sloped and forested terrain,
LiDAR returns from both vegetation and ground can occur at the same height and therefore
might not be distinguishable in the return waveform, especially since the ground returns are
spread out over different heights. The error is therefore already present in the original dataset
that is used for training and validation (Adam et al. 2020, 20). An exemplary area with difficult

characteristics causing this kind of problem can be the GEDI plot 1960 (see Figure 44)
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Also, our study area possesses a very diverse vegetation structure ranging from
homogeneous spruce monoculture to old-growth beech forest with natural rejuvenation (see
Figure 42). Nandy et al. (2021, 6) themselves noted that their good results could be explained
by the relatively homogeneous conditions of forest canopy complemented by few topographic
variations. It can be noted that the value range of different vegetation parameters for other
studies was limited compared to our study, indicating more homogeneous vegetation
structures. For example, our datasets for the maximum vegetation height ranged from 0.00 m
to 50.00 m for the airborne data and 5.39 m to 49.97 m for the GEDI data, covering a value
scale of 50.00 m and 44.58 m respectively. Even the mean vegetation height covered a broad
value range; 0.00 m to 45.75 m for the airborne and 0.00 m to 36.60 m for the spaceborne
data. In comparison Nandy et al. (2021) field-measured tree height only ranging from 14.20 m
to 32.40 m, with a mean of 25.53 m and a value range of 18.20 m. Kacic et al. (2021) also
conducted their study in an area with flat terrain (Paraguayan Chaco). Furthermore, the
modelled canopy height only ranges from 1.80 m to 17.60 m, with a mean value of roughly
5.30 m and a value range of 15.8 m. Multilayered structures are not that prevalent within that
forest ecosystem, which would cause the most limitations for GEDI derived canopy height
estimates. Overall, the vegetation is rather low and rather sparse (mean total canopy cover:
19.5 %). For Liu et al. (2019) the canopy height ranged from 9.00 m to 36.00 m with the mean
height being 19.00 m and the value range 27.00 m. Similar conditions could be observed for
the AGBD. Our initial GEDI dataset included 28.44 Mg/ha as minimum and 569.29 Mg/ha as
maximum values, covering a value range of 540.85 Mg/ha in total. For Liu et al. (2019) the
AGB ranged from 12.64 Mg/ha to 285.43 Mg/ha covering a value range equalling 272.79
Mg/ha. The AGB of Debastiani et al. (2019) ranged between 139 Mg/ha to 516 Mg/ha, with a
value range of 377 Mg/ha.

Commonalities between areas with high deviations were also investigated. This was only done
for regressions that were validated with the ALS data, so the whole study area could be
examined. Areas with high deviations for the mean and maximum vegetation height and the
FHD were analysed. The best regression results for the variations ALS (fishnet), ALS (plots)
and GEDI (plots) were combined. It was observed that the mean and maximum vegetation
height were overestimated for areas with low vegetation in clearings and at the forest edge
(see Figure 47) and underestimated for areas with high vegetation (see Figure 48). Similar
observations were made by Sothe et al. (2022). Maps for GEDI as well as ICESat-2 tended to
overestimate smaller trees (< 5m) and underestimate taller trees (> 20m). Reasons given for
that was the 10-year gap between the recording date of the ALS data and the spaceborne
data. During this period forest growth and disturbance can occur. Also, the ALS data did not
cover the tallest forests within the research area and the ALS data used the RH95, while the
spaceborne LiDAR utilized the RH98 for estimating the canopy height (Sothe et al. 2022, 13).
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For our study the airborne and spaceborne data was only recorded 1 to 2 years apart from
each other. This could explain the underestimation of the higher vegetation to some extent.
Furthermore, large-footprint LIDAR is more prone to errors in tree height estimation for low
stature forests. Young stands often show dense understory, especially coniferous trees
possessing many little intersecting branches below the crown attenuating the laser return from
the terrain (Hilbert & Schmullius 2012, 2227f.). When comparing the original ALS and GEDI
data there is an already existing difference, which then influences the modelled outcome. But
this would only explain, why models utilizing GEDI data overestimated the vegetation height
in certain areas, Models using the ALS data also over- and underestimated the original input
data. Another reason for the overestimation of the vegetation height in clearings and at the
forest edge can be due to the spatial resolution of 10 m. A pixel overlapping with the forest
edge can include the canopy of high trees even though the trees are not situated within the
pixel itself. Also, the overestimation of low vegetation heights and the underestimation of high
vegetation heights can be due to the value distribution of the initial ALS and GEDI data. High
mean (> 25 m) and maximum (> 35 m) vegetation heights are not overly represented within
the datasets and therefore the training samples (see Figure 16 & Figure 17). Low maximum
vegetation heights (< 5 m) are also only sparsely present within the initial ALS dataset and not
at all represented within the GEDI dataset (see Figure 17). The averaged FHD regressions
overestimated the original ALS FHD values for low vegetation and clearings, but also areas
with high vegetations (see Figure 47). Furthermore, very few areas could be identified, where
the averaged FHD underestimated the original values (see Figure 48). Comparing the initial
ALS FHD values to the initial GEDI FHD values (see Figure 18), the ALS dataset ranges from
0.00 to 3.80, while the GEDI dataset only encompasses FHD values ranging from 1.49 to 3.39,
explaining why especially the GEDI based regression is more prone to overestimation.

Further investigations considering the influence of the study area characteristics on the

regression results were made in chapter 8.6.
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Overestimation
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Figure 47: Overestimation of the regressions. Exemplary ares where all three varitions (ALS fishnet, ALS plot,
GEDI value) for the parameters mean vegetation height, maximum vegetation height and FHD overestimate the
ALS validation values.
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Figure 48: Underestimation of the regressions. Exemplary areas where all three variations (ALS fishnet, ALS plot,

GEDI value) for the parameters mean vegetation height, maximum vegetation height and FHD underestimate the

ALS validation values.
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8.6. Influence of Study Area Characteristics

It can be observed that most of the RMSE values for the different variations (ALS fishnet, ALS
plots, GEDI plots, GEDI cross-validation) of the vegetation parameters are distributed in a
similar way among the classes of the study area characteristics as can be seen in Figure 39,
Figure 40 and Figure 41. Indicating, that the study area characteristics could be having an
influence on the accuracy of the regression results.
Overall, it can be analysed that the regressions trained and validated with GEDI data have
less variations of the RMSE values among different TCD, DLT and slope classes. This can be
due to the smaller number of GEDI plots compared to the fishnet grid cells which cover the
whole study area. Due to this some of the TCD, DLT or slope classes can be underrepresented
or overrepresented within the GEDI plots. For example, this can be observed especially for
GEDI plots covering areas with slope inclinations > 60°. Only 3 plots of the entire dataset are
present within this class.
Furthermore, it is noticeable that the RMSE distribution of the vegetation parameters
maximum vegetation height and FHD react quite similar for each study area characteristic,
while the RMSE distribution of the mean vegetation height is mostly contrary to both. The
RMSE distribution of the AGBD is like the mean vegetation height considering the forest type
and similar to the maximum vegetation height and FHD considering the slope gradient. Three
study area characteristics were investigated:

1) The canopy cover (TCD)

2) The forest type (DLT)

3) And the slope inclination.
It can be observed that a high TCD corresponds to a decreasing accuracy for the mean
vegetation height and partly the AGBD (see Figure 39). With increasing canopy cover the
number of laser impulses that can penetrate the canopy and reach the ground decreases
(Adam et al. 2020, 18). Adam et al. (2020) as well as Wang et al. (2019) discovered that this
has mainly a negative influence on the accuracy of the DTM. But one could consider, that with
decreased penetration of the canopy cover the layers below the top vegetation layer are not
registered, therefore possibly leading to an underestimation of the mean vegetation height and
the AGBD. Falkowski et al. (2008) discovered that high canopy cover conditions lead to a
decreased accuracy of detecting individual trees. On the other hand, a low TCD records a
decreasing accuracy for the maximum vegetation height and the FHD (see Figure 39). A
significantly lower accuracy of the CHM (RH100) in areas with a canopy cover smaller than

25% was also observed in Adam et al. (2020) study. They suggested that this can be due to
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the location of the GEDI plots in sloped areas. It can happen that the return signals from the
canopy top might not exceed the waveform recording start threshold. The waveform recording
is therefore triggered by lower canopy layers or ground return signals and the height difference
between the waveform signal start and the ground elevation is underestimated. When Adam
et al. (2020) removed plots in steep areas the accuracy of the CHM in areas with low canopy
cover improved (Adam et al. 2020, 21). This differentiation was not conducted for this study,
it can therefore not be said if it applies to our results.

Considering the forest type the mean vegetation height as well as the AGBD show a lower
accuracy for the broadleaved trees class compared to the coniferous trees class and the no
forest class (see Figure 40). Many studies have observed a higher accuracy of LIDAR CHM
in coniferous forest than in deciduous or mixed forest (Adam et al. 2020; Wasser et al. 2013).
This is because deciduous forests tend to have a more closed structure with less gaps for the
laser impulse to detect the ground through (Adam et al. 2020, 20). Within our study area most
of the trees within the broadleaved trees class are beech trees, while most of the trees within
the coniferous trees class are spruce trees. Their growth properties vary from each other. The
crown diameter of spruce increases continually with age. If additional space is provided
through the removal of surrounding trees, they can only react slowly and to a limited degree.
Throughout the trees lifespan the relation between crown size, needle biomass and timber
volume stays relatively inflexible. On the contrary, beech trees can react with a pronounced
increase in crown size, depending on the availability of light. It then may take some time for
the relationship between timber and crown volume to adjust. They are known to form closed
canopies, even with low tree density. This is referred to as sculpted crown. Therefore, these
parameters are not as strongly related for beech trees as they are for spruce trees (Heurich &
Thoma 2008, 657f.). The reduced relation between timber volume, crown volume and leaf
biomass combined with the impermeable canopy cover, could explain the reduced accuracy
of the AGBD estimation for the broadleaved trees class. For the maximum vegetation height
as well as the FHD the accuracy for the broadleaved and coniferous trees classes is quite
similar. A significant decrease in accuracy can be observed for the class no forest. Especially
for the regressions utilizing the GEDI plots as training samples and validating the regressions
with the ALS data (see Figure 40). This steep decline could be due to the size and form of the
GEDI plots. If the footprint captures the backscatter of a meadow with one single tree, the
maximum vegetation height is the maximum height of this tree. This would also apply to
maximum vegetation height aggregated into one fishnet grid. But contrary to the GEDI plot the
fishnet grid overlaps precisely with one Sentinel pixel. Therefore, the multispectral and textural
characteristics are more representative for the conditions recorded in this sample. While the
GEDI plot aggregates the values of several Sentinel pixels. The maximum vegetation height

and FHD value are then set in a wrong relation to the multispectral and textural conditions
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leading to a distortion when calculating the regressions. Furthermore, it has to be noted for
both parameters based on the GEDI dataset, but especially the FHD, that lower values are
not represented (see Figure 17 & Figure 18).

According to literature the steeper the slope the more the accuracy of the estimated vegetation
height decreases (Adam et al. 2020; Hilbert & Schmullius 2012; Harding & Carabajal 2005;
Yang et al. 2011). Contrary to this, it is noticeable for our study that a low slope gradient does
not necessarily correlate with a low RMSE value (see Figure 41). Itis possible that other study
area characteristics have a larger influence on the RMSE distribution than the slope inclination
or that the combination of different study area characteristics can increase or decrease the
deviation of the regression results.

Analysing the RMSE distribution of the mean vegetation height according to different study
area characteristics could support this hypothesis. The mean vegetation height has its highest
RMSE values for the second slope class 20°-40°. Otherwise, the RMSE decreases again with
increasing slope inclination (see Figure 41). This can be observed for the regressions
validated with the ALS data. The regression validated with the GEDI data shows little variation
at all. Furthermore, for the mean vegetation height higher RMSE values correlate in general
with higher TCD values (see Figure 39). The fourth TCD class 75%-100% is particularly
prominent (64 %) within the second slope class 20°-40° (see Figure 49), both having the
highest RMSE values for most of the regression results (TCD: 5.95 m — 7.87 m/slope: 5.61 m
-7.77 m). While the first TCD class 0%-25% is the dominant class (49%) within the fourth slope
class 60°-80° (see Figure 49), both showcasing the lowest RMSE values for most of the
regression results (TCD: 4.56 m-6.90 m/slope: 5.28 m-6.54 m). But it must be noted that the
TCD class 75%-100% is also the dominant class (60%) within the slope inclination 0°-20°,
which has significantly lower RMSE values (5.80 m-6.87 m) than the second slope class 20°-
40°. Regarding the forest type, the mean vegetation height has its highest RMSE values for
the broadleaved forest class (6.52 m-8.28 m) and its lowest RMSE values mostly for the no
forest class (4.59 m-6.93 m). The coniferous forest class (4.95 m-6.64 m) also has significantly
lower error values (see Figure 40). Within the slope inclination 20°-40° the broadleaved forest
class dominates most of the area with 54%, while the no forest class has its lowest share with
only 12%. On the other hand, within the slope inclination 60°-80° the broadleaved forest only
amounts to 10% of the area while the no forest and coniferous forest class dominate with 47
% and 43 % respectively (see Figure 50). In this case areas with low slope gradients are
dominated by the broadleaved forest class and a high TCD, all presenting high RMSE values
for the mean vegetation height. Furthermore, areas with high slope gradients are dominated
by the no forest class, the coniferous forest class and low TCD values, all three presenting
low RMSE values for the mean vegetation height. Usually, an increasing slope correlates with

an increasing error value. According to this analysis one can assume that for the error
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distribution of the mean vegetation height regression the TCD and the forest type are more
influential than the slope gradient. Hilbert & Schmullius (2012) found that patchy or less dense
forests can lead to waveforms with discrete canopy and ground return despite the steep
surface topography, because the laser pulse is more likely to reach the real terrain if there is
a gap in the canopy cover. Furthermore, it must be noted that the slope inclination 0°-20° has
lower error values than the slope inclination 20°-40°. Even though the slope inclination 0°-20°
has a very similar TCD value distribution and a higher presence of the broadleaved forest
class (36%) than the no forest class (21%) (see Figure 49 & Figure 50). It is therefore more
likely that the combination of different study area characteristics can either increase or
decrease the deviation of predicted regression values from the reference data.

The maximum vegetation height has the expected RMSE distribution of increasing RMSE
values with increasing slope gradient except for the slope inclination 0°-20°, which also
presents increasing RMSE values (see Figure 41). Analysing the other study area
characteristics one can observe that increasing TCD values correlate with decreasing RMSE
values, with the fourth TCD class 75%-100% presenting the lowest RMSE values (see Figure
39). Furthermore, the broadleaved class and the coniferous class correspond to low RMSE
values, while significantly higher RMSE values are in part presented for the no forest class
(see Figure 40). The TCD class 75%-100% as well as the broadleaved and coniferous class
dominate within the areas that have a slope inclination of 0°-20°. The high RMSE values for
relatively low slope gradients can therefore not be explained through the influence of other
study area characteristics. The same can be said for the RMSE distribution of the FHD
regression. Here it can also be observed that in part the slope inclination 0°-20° presents the
highest RMSE values. The FHD regression also corresponds to increasing TCD values with
decreasing RMSE values (see Figure 39) and has lower RMSE values for the broadleaved
and coniferous class than for the no forest class (see Figure 40) same as the maximum

vegetation height.

8.7. Influence of the utilized Data (ALS vs. GEDI)

When analysing the regression results within the context of the utilized data several
observations can be made:
a) With few exceptions the variable combination all bands always results in the most
accurate regressions.
b) For Group A (validating with ALS data) the regressions trained with ALS data and
fishnet grid cell samples always achieve the best accuracy compared to the

regressions utilizing the GEDI plots
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c) Group B (validating with GEDI data) mostly has lower RMSE and MAE values than all
Group A results.

d) Group A has higher R? values than all group B results.

Point a): In most cases the variable combination achieving the regressions with the highest
accuracy was all bands. There were four exceptions (see Table 21). The maximum vegetation
height regressions utilizing ALS (R? = 0.40, RMSE = 9.39 m, MAE = 7.39 m) and GEDI (R? =
0.35, RMSE = 10.53 m, MAE = 8.23 m) data within the GEDI plots for training and validating
the results with the ALS data both achieved the highest accuracy for the variable combination
4 Orbits. Compared to the variable combination all bands with the second best accuracy the
improvement was not that significant (ALS max (plots): R? = 0.39, RMSE = 9.43 m, MAE =
7.37 m; GEDI RH100 (plots): R? = 0.33, RMSE = 10.56 m, MAE = 8.23 m). Comparing the
used features and their importance between the models using all bands or 4 Orbits shows that
mostly the same multispectral bands and vegetation indices were utilized. When using the
combination 4 Orbits the importance of these variables was slightly higher. A significant
difference was noticeable for the use of texture and S1 backscatter features. None of these
features were used for the regression based on the ALS data using the 4 Orbits combination.
The GEDI regression did use the mean and standard deviation GLCM bands for the averaged
VH polarisation, but the feature importance was a lot smaller compared to the variable
combination all bands. Indicating that averaging the four different S1 orbits into one dataset
lessens their importance, when calculating the vegetation parameters. The combination NC
resulted in the highest accuracy for the mean vegetation height regression when training and
validating the model with ALS data and utilizing the GEDI plots as samples (R? = 0.46, RMSE
= 6.91 m, MAE = 5.39 m). The second best accuracy again was achieved for the variable
combination all bands (R? = 0.45, RMSE = 6.96 m, MAE = 5.44 m). Some of the used features
for all bands and NC were the same such as the green (B3), the red (B4) and the first
vegetation red edge (B5) band. For both the red band (B4) was among the most important
features. The utilized vegetation indices differentiated from each other. All bands employed
the NDVI6, while NC employed the NDII7, the PSRI and the NDWI. The combination Top 10
achieved the highest accuracy for the FHD regressions when utilizing the ALS FHD values for
training and validation and the fishnet grid cells as samples (R? = 0.35, RMSE = 0.62, MAE =
0.46) compared to the variable combination 4 Orbits (R* = 0.34, RMSE = 0.63, MAE =0.46) or
all bands (R? =0.32; RMSE = 0.64; MAE = 0.47). Comparing the used features and their
importance between these three combinations it can be observed that all utilize the green (B3)
and the first vegetation red edge (B5) band with roughly the same importance. Furthermore,
Top 10 adds the SWIR (B11/B12) and the red (B4) band and does not utilize vegetation indices

or texture variables.
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For the observations b), c) and d) the following three reasons were identified:

1) Validation data from the same or a different source

2) Amount of training and validation data

3) Shape of the training samples (pixels vs. GEDI plots)
With regards to 1), models employing ALS data for training and validation achieve better result
compared to models utilizing GEDI data for training and ALS data for validation. Extracting the
training data from the same dataset that is also used to validate the results, can influence the
model into predicting values that are closer to the validation data. One has to consider that
the RH50 values for the study area have a correlation of R = 0.70 with the ALS mean, RH100
has a correlation with ALS max of R = 0.64 and FHD only has a correlation of R = 0.53 with
ALS FHD. These discrepancies are of course picked up by the model, continued and ultimately
reflected in the results. It can be seen when implementing the cross-validation with the GEDI
values that the results for the models using the GEDI data improve. Also, it must be considered
that the acquisition date for the ALS data was the year 2018, while the GEDI data was
recorded in the years 2019 and 2020. Even though this is not a huge time span, still some
noticeable vegetation growth can take place. For example, depending on their age spruce, a
dominant tree in our study area, can grow up to 50 cm in height when they are young and 20-
25 cm per year when they are older than 50 years (Hilbert & Schmullius 2012, 2230).
Furthermore, GEDI (second release Version 2) has a mean systematic geolocation error of
10.3 m (Beck et al. 2021, 17). In a scattered tree ecosystem, a horizontal offset of this size
can result in several meters of height errors, affecting model calibration and validation at the
GEDI footprint level.
Considering 2), the amount of data available for both ALS and GEDI can also influence the
regression outcomes. When validating the regressions with the GEDI values the amount of
available data is limited to the plots. This could have the side effect that extreme outliers in
the regression results are left out by chance. Analysing the cross-validation GEDI models it is
noticeable that they achieve lower RMSE and MAE values in most cases even compared to
the models trained and validated with ALS data utilizing fishnet grid cells as samples. Their R?
values on the other hand were always lower than the R? values calculated for the models
validated with the ALS data. Indicating that the predicted values of models trained and
validated with the GEDI data show less deviation from the observed values in the dataset but
are not good at explaining the variations of the prediction model (Shastry et al. 2017, 100).
Furthermore, when selecting the training samples the ALS dataset offers a much larger value
pool than the GEDI plots (508193 vs 1156). Even though the number of training samples is
kept at 1156 to ensure comparability, the ALS fishnet grid samples are more representative of

the ALS values for the whole study area. Comparing the value distribution of the training
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samples with the value distribution of the ALS data for the entire study area, it can be noted
that the training datasets based on the fishnet grid cells mostly present a similar or almost the
same value distribution. This is the case for ALS mean and ALS max, where the deviations
for the value groups between the training data and the total area are mostly only 1% or less
(see Figure 16 & Figure 17). When ALS mean and max training samples are used within the
form of GEDI plots their value distribution corresponds more closely to the value distribution
of the GEDI data. Certain height groups are thus more strongly represented in one training
dataset than the other. A similar outcome can be observed for the FHD values (see Figure
18). While the ALS FHD values for the fishnet grid as well as the plot training samples are
both representative for the FHD value distribution within the study area. The FHD value
distribution for the GEDI plots is mainly concentrated in higher value classes and does not
represent smaller values at all. Explaining why the FHD regressions based on the GEDI values
are prone to overestimation (see Figure 34).

3), the fishnet grid cells are congruent with the pixels of the S1 and S2 images utilized as
variables. When using the GEDI plots as training samples one first has to extract and average
the values of the ALS data and the S1 and S2 variables for each plot to train the model, which
then again produces a regression presented as a 10x10 m per pixel raster. It can be that
information is lost during this process and the same can be said for the regressions based on
the GEDI data. Translating data contained within a round footprint 25 m in diameter into a
raster consisting of square pixels sized 10x10 m could lead to a slight distortion of the results.
Packalen et al. (2023) investigated the influence of circular or square plots when predicting
the AGB. Their findings showed that when a model fitted to circular plots is used to predict for
square plots the RMSE is slightly underestimated. Given reasons for this were that the
variance of the response variable and the number of edge trees is greater on the square plots.

Our results match with the observations of this study.
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9. Conclusion

Based on the experiments and analysis performed, the research questions can be answered:

(1) Which S1 and S2 variables are best suited to estimate the vegetation parameters
mean and maximum vegetation height, FHD and AGBD in combination with LiDAR

data in an alpine forest?

S2 bands and VIs based on the S2 bands had the strongest correlations with the vegetation
parameters. Especially the NDVI6 and the NLVI with the mean vegetation height and the
AGBD. Both are calculated with vegetation red edge bands, that are quite influential in
estimating the vegetation structure and characteristics, as discovered in other studies. The
maximum vegetation height and the FHD had strong correlations with the first vegetation red
edge band (B5) and the green band (B3). Compared to the other parameters the mean
vegetation height had the strongest correlations with the Sentinel variables. Also, vegetation
parameters derived from GEDI data had weaker correlations than vegetation parameters
based on ALS data in general. It is difficult to determine if this has an impact on the regression
results. In this case the selection of the training and validation data is likely more influential.
Most of the variables with strong correlations were also attributed with a high feature
importance when modelling the vegetation parameters. The AGBD as well as the mean
vegetation height had a high feature importance for the NDVI6 and the red band (B4).
Modelling the mean vegetation height also showed a high feature importance for the NLVI.
The maximum vegetation height and the FHD had a high feature importance for the green
band (B3), and the first vegetation red edge band (B5). Also, the red band (B4) contributed
noticeably to the prediction of the FHD. Furthermore, the mean and median temporal statistics
bands of the spectral bands and the VIs generally have the strongest correlation values and
the highest feature importance. Indicating that this is the best way to aggregate the reflectance
values of the Sentinel data for the chosen time period.

The S1 backscatter, and texture variables did not have strong correlations with any of the
parameters. Still, they were often used by the RF model as features and sometimes achieved
a high feature importance especially the mean and standard deviation texture bands of the
VH polarisation. Both the variable combination all bands and 4 Orbits did include texture
variables and overwhelmingly achieved better regression results in contrast to the variable
combinations Top 70, NC and PC. It can be concluded that adding the texture variables did
improve the results of the RF model, which would be in accordance with other studies. When

comparing the used features of the band combinations all bands to 4 Orbits, all bands
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employed more texture variables than 4 Orbits, indicating, that combining the images of all
four orbits into one dataset did not improve the quality of the data. Even though the S1
variables only had weak to very weak correlations to the vegetation parameters, they still
played a role in predicting the outcome and even improving it. Still the feature importance was
only marginal, seldomly reaching over 10%. Another option would be to utilize L-band data,
as other studies did, noticing a significant improvement in their predicted values compared to

utilizing C-band data.

(2) When utilizing LiDAR data in combination with S1 and S2 data for the assessment of
wall-to-wall vegetation parameters, what qualitative differences can be detected

between spaceborne and airborne LiDAR data?

Both the regressions relying on the ALS data as well as the GEDI data for training and
validation always achieved their highest accuracies when employing the variable combination
all bands. The regressions with the best accuracy for the mean vegetation height were
modelled for the ALS data utilizing the fishnet grid cells as samples resulting in R? = 0.46,
RMSE = 6.78 m and MAE = 5.30 m and for the GEDI data (cross-validation) resulting in R =
0.31, RMSE = 6.36 m and MAE = 5.05 m. The maximum vegetation height also achieved the
highest accuracies for the ALS data utilizing fishnet samples showcasing the following results
R2 = 0.45, RMSE = 7.76 m and MAE = 6.10 m and for the GEDI data (cross-validation) with
R2=0.27, RMSE =7.51 m and MAE = 6.06 m. The FHD predicted its best regressions for the
model utilizing the ALS data and the GEDI plots as samples resulting in R* = 0.40, RMSE =
0.65 and MAE = 0.43 and for the GEDI data (cross-validation) resulting in R*=0.17, RMSE =
0.36 and MAE = 0.31. For the AGBD it was only possible to model the regressions based on
the GEDI data (cross-validation). The best results being R? = 0.27, RMSE = 88.11 Mg/ha and
MAE = 68.51 Mg/ha.When comparing the GEDI regressions (cross-validation) with the ALS
regressions (fishnet/plot) the calculated RMSE and MAE values are quite similar, with the
GEDI regressions mostly achieving the lower values. But when analysing the R? values for the
GEDI regressions (cross-validation), they are significantly lower than the R? values of all the
regressions employing the ALS dataset for validation. This can be due to the limited GEDI
data available for validation. The complete GEDI dataset only includes 1156 plots compared
to the 508193 individual values for the ALS dataset. Furthermore, the circular form of the GEDI
sample plots compared to the square samples of the ALS data has an influence on the results.
This is one explanation why the regressions calculated with the ALS data utilizing GEDI plots
as samples mostly achieved a lower accuracy than the regressions calculated with ALS data
and fishnet grid cells as samples. Also, the plot samples had other spatial locations than the

fishnet samples, resulting in different value distributions within the training datasets. The
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regressions with the lowest accuracy were utilizing GEDI values as training data and ALS
values as validation data. This is mainly due to the already existing deviation between the
original datasets. The regressions based on GEDI had much narrower value ranges than the
ones predicted with ALS data in general, often over- or underestimating the original values.
Nevertheless, they managed to reproduce the horizontal patterns of the vegetation
parameters across our study area. Compared to other studies our results achieved lower
accuracies. Reasons for this can be the small-scale complex topography of the study area
terrain, the highly structured and diverse vegetation and the small spatial resolutions of our
regressions. Generally, the ALS data was better suited to reproduce the variability of the
vegetation parameters across our study area. However, the GEDI data provided viable results.
Considering the advantages of GEDI data, such as a much broader temporal and spatial
availability, as well as lower costs, it is an adequate alternative to ALS data. Able to deliver
meaningful results, when modelling vegetation parameters even in areas with challenging
conditions (highly structured forest, steep slopes). It can be especially helpful for providing
data in remote areas or for detecting temporal changes within a forest.

Also, our study has shown that the study area characteristics such as the forest type, the
canopy cover and the slope inclination have a potential influence on the results. For example,
dividing the study area into different forest type classes and calculating the regressions
separately for each class could provide more accurate information. This can be the subject of

further research.
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VI. Appendix

A. Additional Data

Table 28: Exemplary field plots.

Image captured on the

Vegetation
Coniferous forest; dead wood; regrowing trees

characteristics

670 ma.s.l. / 29°

Altimeter / slope

Maximum height 34.41 m (GEDI) / 33.55 m (ALS)

Mean height 20.04 m (GEDI) / 22.75 m (ALS)

FHD 3.31 (GEDI) / 2.82 (ALS)

AGBD 299.99 Mg/ha (GEDI)

Vegetation
Clearing; natural regeneration; hazelnut trees

characteristics

Altimeter / slope 674 ma.s.l. /41°

Maximum height 47.61 m (GEDI) / 39.29 m (ALS)

Mean height 24.65 m (GEDI) / 23.06 m (ALS)

FHD 3.32 (GEDI) / 2.98 (ALS)

AGBD 421.88 Mg/ha (GEDI)

Vegetation

Edge of the forest by the creek; scrub

characteristics

Altimeter / slope 643 ma.s.l./17°

Maximum height 31.79 m (GEDI) / 29.49 m (ALS)

Mean height 6.36 m (GEDI) / 8.99 m (ALS)

FHD 3.22 (GEDI) / 2.61 (ALS)

AGBD 171.60 Mg/ha (GEDI)

Vegetation Old growth forest; standing and fallen dead trees;

characteristics natural regeneration beech

Altimeter / slope 686 m a.s.l. / 30°

Maximum height 46 m (GEDI) / 37.08 m (ALS)

Mean height 11.08 m (GEDI) / 25.00 m (AlS)

FHD 2.97 (GEDI) / 2.64 (ALS)

AGBD 288.92 Mg/ha (GEDI)
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Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Street; brook; mixed forest

686 ma.s.l. /21°

26.88 m (GEDI) / 30.61 m (ALS)
4.04 m (GEDI) / 8.51 m (ALS)
3.19 (GEDI) / 2.65 (ALS)

141.69 Mg/ha (GEDI)

Beech pure stock; natural regeneration

727 ma.s.l./35°

46.22 m (GEDI) / 45.76 m (ALS)
31.17 m (GEDI) / 27.43 m (ALS)
3.21 (GEDI) / 2.76 (ALS)

456.31 Mg/ha (GEDI)

80% beech; spruce in undergrowth; highly

structured; no distinct layers
762 ma.s.l. /33°

25.7 m (GEDI) / 38.15 m (ALS)
10.15 m (GEDI) / 19.75 m (ALS)
2.92 (GEDI) / 2.55 (ALS)

145.55 Mg/ha (GEDI)

Beech and spruce; no distinct layer; no young

growth; high stem count

796 ma.s.l. / 42°

26.62 m (GEDI) / 25.96 m (ALS)
14.01 m (GEDI) / 12.95 m (ALS)
2.95 (GEDI) / 2.19 (ALS)

169.09 Mg/ha (GEDI)

Beech, spruce and sycamore

884 ma.s.l./35°

33.49 m (GEDI) / 39.1 m (ALS)
15.99 m (GEDI) /10.55 m (ALS)
3.12 (GEDI) / 2.50 (ALS)

211.09 Mg/ha (GEDI)




Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

1. Layer beech

2. Layer spruce
936 ma.s.l. /38°
44.61 m (GEDI) / 39.13 m (ALS)
13.37 m (GEDI) / 29.14 m (ALS)
2.93 (GEDI) / 2.78 (ALS)

234.08 Mg/ha (GEDI)

Beech and fir

959 ma.s.l. / 24°

39.52 m (GEDI) / 40.24 m (ALS)
26.82 m (GEDI) / 34.52 m (ALS)
3.31 (GEDI) / 2.03 (ALS)

358.10 Mg/ha (GEDI)

Sycamore, fir and ash-tree (Wrong GEDI plot?)

1010 ma.s.l. / 35°

12.13 m (GEDI) / 21.05 m (ALS)
1.08 m (GEDI) / 14.89 m (ALS)
2.30 (GEDI) / 2.04 (ALS)

45.53 Mg/ha (GEDI)

One big beech tree; beech and spruce in second
layer

1037 ma.s.l. / 34°

20.19 m (GEDI) / 32.48 m (ALS)

7.49 m (GEDI) / 10.06 m (ALS)

2.56 (GEDI) / 2.87 (ALS)

110.92 Mg/ha (GEDI)

Beech and spruce

1040 m a.s.l. /39°

34.54 m (GEDI) / 41.44 m (ALS)
17.49 m (GEDI) / 15.76 m (ALS)
3.09 (GEDI) / 2.66 (ALS)

226.95 Mg/ha (GEDI)




Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Vegetation
characteristics
Altimeter / slope
Maximum height
Mean height
FHD

AGBD

Monoculture spruce; lying deadwood

1224 ma.s.l./21°

45.63 m (GEDI) / 30.84 m (ALS)
25.92 m (GEDI) / 18.46 m (ALS)
2.98 (GEDI) / 2.73 (ALS)

392.32 Mg/ha (GEDI)

Monoculture spruce; lying deadwood

1238 ma.s.l. / 18°

34.04 m (GEDI) / 29.36 m (ALS)
17.04 m (GEDI) / 18.07 m (ALS)
3.30 (GEDI) / 2.80 (ALS)

253.80 Mg/ha (GEDI)

Edge of the forest; beech; spruce

1249 ma.s.l. /19°

34.45 m (GEDI) / 27.52 m (ALS)
22.92 m (GEDI) / 18.73 m (ALS)
3.34 (GEDI) / 2.46 (ALS)

294.37 Mg/ha (GEDI)
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B. Correlation

Table 29: The ten highest R? values between individual Sentinel variables and the mean vegetation height (ALS mean) both with the spatial resolution 10x10 m per pixel. Different
corelations are ALS mean (total area). ALS mean 75 (only grids with a tree cover density (TCD) > 75%). ALS mean broadleaved forest (only grids that are located in broadleaved
forest and have a TCD >75%) and ALS mean coniferous forest (only grids that are locate in coniferous forest and have a TCD > 75%).

ALS mean (10x10 | mismean75(10a0) [l ALsmean broadieaved forest (10x10) Jll AL mean coniferous forest (10x10) |

ALS mean 75 (10x10) ALS mean broadleaved forest (10x10) ALS mean coniferous forest (10x10)

Temporal Temporal Temporal Temporal
mean 0.38 mean 0.18 mean 0.11 mean 0.18
mean 0.37 \ mean 0.17 mean 0.11 mean 0.17
med 0.36 mean 0.17 mean 0.11 mean 0.17
med 0.36 | mean 0.17 med 0.10 mean 0.16
med 0.34 mean 0.17 med 0.10 mean 0.16
mean 0.33 mean 0.17 EVI mean 0.10 mean 0.16
mean 0.33 med 0.17 mean 0.10 med 0.16
mean 0.33 EVI mean 0.17 mean 0.10 min 0.16
mean 0.33 med 0.17 mean 0.10 mean 0.15
mean 0.33 med 0.16 med 0.10 EVI mean 0.15
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Table 30: The ten highest R? values between individual Sentinel variables and the maximum vegetation height (ALS max) both with the spatial resolution 10x10 m per pixel.
Different correlations are ALS max (total area). ALS max 75 (only grids with a tree cover density (TCD) > 756%). ALS max broadleaved forest (only grids that are located in
broadleaved forest and have a TCD >75%) and ALS max coniferous forest (only grids that are locate in coniferous forest and have a TCD > 75%).

ALS max (10x10)

Temporal R2
Statistics Band

NDVI6 mean 0.26 NLVI med

ALS max 75 (10x10)

Temporal R2
Statistics Band

ALS max broadleaved forest (10x10)

Temporal R2
Statistics Band

NLVI med

ALS max coniferous forest (10x10)

Temporal R2
Statistics Band

NLVI med

Parameter Parameter Parameter Parameter

| NDVIE | [NV [NV NI

med 0.25 \ mean 0.06 mean 0.03 mean 0.07
med 0.25 mean 0.06 med 0.03 mean 0.07
mean 0.24 \ mean 0.06 mean 0.03 mean 0.07
mean 0.24 min 0.05 min 0.02 mean 0.06
mean 0.22 med 0.05 mean 0.02 min 0.06
mean 0.22 med 0.05 mean 0.02 max 0.06
mean 0.22 med 0.05 mean 0.02 med 0.06
mean 0.22 max 0.05 TCB med 0.02 med 0.05
min 0.22 mean 0.05 max 0.02 med 0.05

Table 31: The ten highest R? values between ALS mean or ALS max and individual Sentinel variables for the 30x30 m and 100x100 m fishnet.

ALS mean (30x30) ALS max (30x30) ALS mean (100x100) ALS max (100x100)

Temporal Temporal Temporal Temporal
med med 0.20 mean 0.55 min 0.19
EVI mean 0.42 \ mean 0.18 med 0.53 mean 0.18
med 0.41 mean 0.17 med 0.53 max 0.18
mean 0.40 \ mean 0.16 mean 0.52 mean 0.17
med 0.38 mean 0.15 med 0.51 min 0.17
mean 0.38 med 0.15 mean 0.49 mean 0.17
mean 0.36 mean 0.15 mean 0.49 max 0.16
mean 0.36 med 0.14 min 0.49 max 0.16
mean 0.36 med 0.14 mean 0.48 med 0.15
med 0.35 max 0.14 mean 0.48 mean 0.15
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Table 32: R? values calculated with the ALS mean or ALS max and all Sentinel variables utilizing the fishnet grid cell sizes 10x10 m, 30x30 m and 100x100 m including the higher
subalpine zone. Correlations calculated for the spatial resolution 10x10 m also include the R? values between ALS mean or ALS max and all Sentinel variables only within areas
with a Tree Cover Density >75%, only within areas covered by broadleaved forest and only within areas covered by coniferous forest.

ALS max

LS mea max
R Parameter

mean (10x10)

Parameter Parameter Parameter

RZ
(total)

II

ean
B4_med
B4_min
B4_sd
B4_var
B5_max
B5_mean
B5_med
B5_min
B5_sd
B5_var
B6_max
B6_mean
B6_med
B6_min
B6_sd
B6_var
B7_max

0.07
0.16
0.16
0.09
0.06
0.02
0.08
0.18
0.19
0.06
0.05
0.02
0.16
0.25
0.23
0.11
0.13
0.04
0.11
0.16
0.19
0.03
0.05
0.04
0.04
0.02
0.02
0.01
0.00
0.00
0.07
0.05
0.05
0.03
0.00
0.00
0.05
0.04
0.03
0.02
0.00
0.00

0.06
0.12
0.10
0.07
0.06
0.01
0.08
0.11
0.12
0.02
0.06
0.02
0.13
0.11
0.10
0.10
0.08
0.04
0.09
0.06
0.09
0.03
0.05
0.03
0.03
0.02
0.01
0.01
0.00
0.00
0.05
0.04
0.02
0.00
0.00
0.00
0.03
0.02
0.01
0.01
0.00
0.00

0.01
0.08
0.05
0.03
0.01
0.00
0.01
0.07
0.04
0.00
0.00
0.00
0.05
0.04
0.07
0.04
0.06
0.00
0.01
0.01
0.06
0.00
0.04
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.05
0.00
0.06
0.10
0.11
0.02
0.05
0.02
0.11
0.08
0.07
0.09
0.06
0.01
0.04
0.03
0.09
0.02
0.05
0.01
0.04
0.02
0.00
0.00
0.00
0.00
0.03
0.06
0.03
0.00
0.00
0.00
0.02
0.02
0.01
0.00
0.00
0.00

B2_med
B2_min
B2_sd
B2_var
B3_max

B3_med
B3_min
B3_sd
B3_var
B4_max
B4_mean
B4_med
B4_min
B4_sd
B4_var
B5_max
B5_mean
B5_med
B5_min
B5_sd
B5_var
B6_max
B6_mean
B6_med
B6_min
B6_sd
B6_var
B7_max
B7_mean
B7_med
B7_min
B7_sd
B7_var
B8_max

B8_med
B8_min
B8_sd
B8_var

© © [}
S| =l =t
o ° o)
£ Q @
S S S

R? R
(total) (>75%)
0.08 0.01
0.13 0.02
0.12 0.01
0.10 0.01
0.06 0.01
0.03 0.02
0.10 0.01
0.14 0.03
0.17 0.02
0.09 0.01
0.06 0.01
0.03 0.01
0.13 0.01
0.19 0.01
0.17 0.03
0.12 0.01
0.11 0.01
0.04 0.02
0.13 0.01
0.17 0.04
0.18 0.01
0.07 0.02
0.05 0.03
0.05 0.03
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.01 0.01
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00
0.00 0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

A [}

0.11
0.20
0.19
0.11
0.09
0.05
0.13
0.22
0.23
0.07
0.08
0.05
0.22
0.31
0.29
0.14
0.18
0.08
0.14
0.21
0.24
0.04
0.07
0.06
0.06
0.03
0.03
0.02
0.01
0.00
0.10
0.08
0.07
0.04
0.01
0.00
0.08
0.06
0.05
0.04
0.00
0.00

0.08
0.12
0.10
0.10
0.06
0.05
0.10
0.15
0.14
0.10
0.04
0.05
0.14
0.18
0.16
0.12
0.09
0.06
0.12
0.16
0.16
0.08
0.03
0.05
0.00
0.00
0.00
0.01
0.02
0.01
0.01
0.00
0.01
0.00
0.03
0.01
0.01
0.00
0.00
0.00
0.03
0.01

B2_max

B3_med
B3_min
B3_sd
B3_var
B4_max
B4_med
B4_min
B4_sd
B4_var
B5_max
B5_|
B5_med
B5_min
B5_sd
B5_var
B6_max
B6_med
B6_min
B6_sd
B6_var
B7_max
B7_mean
B7_med
B7_min
B7_sd
B7_var
B8_max

@ @ @ @
5] ) ES ()
o o o] o o

0.08
0.05
0.03
0.05
0.08
0.12
0.08
0.06
0.04
0.05
0.04
0.09
0.13
0.12
0.09
0.10
0.09
0.11
0.08
0.06
0.05
0.05
0.02
0.05
0.04
0.02
0.03
0.00
0.09
0.05
0.07
0.04
0.05
0.00
0.11
0.06
0.06
0.03
0.04
0.00
0.12
0.08



Err 0.07 0.03 0.00 0.03 0.01 0.01 0.00 Yl Bsamax 0.09 0.01 0.16 0.07
[ B8amean | 0.05 0.01 0.00 0.01 0.00 0.00 0.00 (Xl ssamean | 0.07 0.00 012 0.03
[ Bsamed | 0.04 0.02 0.00 0.03 0.00 0.00 0.00 IO Bsamed | 0.06 0.00 0.12 0.04
[ B8amn | 0.03 0.01 0.00 0.01 0.00 0.00 0.00 (Ol ssamin | 0.04 0.00 0.07 0.00
[ Bs8asd | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Yl Bsasd | 0.00 0.02 0.02 0.10
EX 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (Ol ssavar | 0.00 0.01 0.01 0.06
[ Biimax | 0.05 0.04 0.01 0.02 0.06 0.03 0.00 IOl Biimax 0.06 0.02 0.04 0.00
[ Bl mean | 0.04 0.04 0.02 0.03 0.06 0.03 0.00 (Ol Biimean | 0.04 0.03 0.03 0.00
[ Bllmed | 0.05 0.05 0.04 0.04 0.06 0.00 0.00 (IO Biimed | 0.05 0.04 0.04 0.00
[ Bl1mn | 0.00 0.00 0.00 0.00 0.01 0.01 0.00 (Ol Biimn | 0.00 0.02 0.00 0.01
B 0.06 0.05 0.02 0.05 0.03 0.01 0.00 Il Biisd 0.07 0.00 0.06 0.01
B 0.06 0.04 0.01 0.04 0.04 0.03 0.00 (Ol Biivar | 0.07 0.00 0.07 0.01
[ B2 max | 014 0.10 0.07 0.09 013 0.01 0.00 I Bi2max 017 0.08 018 0.02
0.13 0.10 0.05 0.10 013 0.01 0.00 0.00 0.16 0.09 017 0.03
013 011 0.04 0.08 012 0.01 0.00 0.00 017 0.09 018 0.03
0.3 003 001 0.03 0.05 003 0.00 000 0.03 0.05 003 003
013 011 0.03 0.07 0.08 0.01 0.00 0.00 0.16 0.03 018 0.00
0.07 006 001 0.06 0.07 001 0.00 000 011 0.03 015 0.00
0.19 0.06 0.04 0.05 013 0.02 0.01 0.03 022 0.12 031 0.15
037 017 010 015 0.22 004 001 004 0.42 015 052 015
036 017 0.10 014 022 0.04 0.01 0.04 041 014 051 013
0.26 008 002 0.08 015 001 0.00 002 030 0.10 037 011
0.02 0.02 0.00 0.02 0.01 0.00 0.00 0.00 0.02 0.00 0.02 0.00
012 007 001 0.08 0.09 002 0.00 003 014 0.05 020 005
0.15 0.04 0.03 0.03 012 0.02 0.01 0.02 017 0.10 025 011
032 015 007 013 021 003 0.00 004 036 014 047 011
031 0.14 0.07 0.11 0.20 0.03 0.00 0.03 035 0.12 0.45 0.09
0.20 006 001 0.06 013 001 0.00 001 023 0.09 033 011
0.06 0.03 0.00 0.03 0.03 0.01 0.00 0.00 0.07 0.02 012 0.04
0.0 003 000 0.04 0.04 001 0.00 001 0.06 0.02 013 005
0.20 0.08 0.05 0.06 0.15 0.03 0.01 0.03 0.26 0.14 034 0.15
033 017 010 0.16 022 005 001 005 040 017 048 014
0.30 0.16 0.09 013 0.21 0.04 0.01 0.04 038 0.15 0.46 012
025 008 002 0.09 017 002 0.00 003 032 013 038 014
0.15 0.06 0.01 0.08 0.10 0.02 0.00 0.02 0.19 0.07 023 0.08
0.10 005 001 0.08 0.08 002 0.00 003 015 0.07 020 009
0.18 0.08 0.05 0.06 0.14 0.03 0.01 0.03 0.24 0.14 032 014
0.29 016 008 015 021 004 001 005 036 0.16 045 013
0.27 0.15 0.09 013 0.19 0.04 0.01 0.04 034 0.14 0.42 011
015 003 001 0.06 011 001 0.00 002 0.20 0.09 025 010
0.09 0.02 0.00 0.05 0.07 0.01 0.00 0.02 0.12 0.06 0.16 0.07
0.06 0.02 0.00 0.05 0.06 0.01 0.00 0.02 0.10 0.06 017 0.09
0.10 0.02 0.00 0.01 0.05 0.00 0.00 0.00 0.16 0.05 021 0.04
021 0.05 0.02 0.05 0.09 0.00 0.01 0.00 031 0.07 037 0.06
0.19 0.04 0.01 0.04 0.08 0.00 0.01 0.00 0.29 0.07 036 0.06
024 0.06 0.02 0.06 0.10 0.00 0.01 0.00 035 0.06 041 0.05
0.17 0.05 0.02 0.06 0.06 0.00 0.01 0.00 0.25 0.03 031 0.02
011 005 002 005 005 000 0.00 000 018 0.02 024 001
0.22 0.05 001 0.06 0.09 0.00 0.02 0.00 0.00 0.00 038 0.04
019 003 000 005 007 001 003 000 0.00 0.00 033 005
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018 0.03 0.00 0.04 0.07 0.01 0.03 0.00 0.00 0.00 033 0.05
0.09 0.01 0.00 0.02 0.03 0.01 0.02 0.00 0.00 0.00 017 0.03
011 0.04 0.01 0.03 0.05 0.00 0.00 0.00 0.00 0.00 0.19 0.01
0.07 0.03 0.01 0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.14 0.00
027 0.08 0.03 0.08 014 0.00 0.00 0.00 0.00 0.00 043 0.08
0.25 0.07 0.02 0.09 013 0.00 0.01 0.00 0.00 0.00 0.40 0.08
024 0.06 0.02 0.08 012 0.00 0.01 0.00 0.00 0.00 039 0.08
0.16 0.03 0.00 0.05 0.08 0.00 0.01 0.00 0.00 0.00 0.28 0.07
018 0.08 0.04 0.06 0.10 0.01 0.00 0.00 0.00 0.00 030 0.03
0.11 0.05 0.03 0.04 0.06 0.01 0.00 0.00 0.00 0.00 0.22 0.02
020 0.08 0.05 0.06 0.15 0.03 0.01 0.03 023 0.12 034 0.15
0.33 017 0.10 0.16 0.22 0.05 0.01 0.05 0.38 0.15 0.48 0.14
030 0.16 0.09 013 021 0.04 0.01 0.04 035 014 0.46 0.12
0.25 008 002 0.09 017 002 0.00 003 0.29 0.2 038 014
0.15 0.06 0.01 0.08 0.10 0.02 0.00 0.02 0.16 0.05 023 0.08
0.10 005 001 0.08 0.08 002 0.00 003 011 0.05 020 009
027 013 0.08 011 0.19 0.05 0.02 0.06 0.00 0.00 041 018
038 018 011 018 0.26 006 0.02 007 0.00 0.00 055 017
037 017 0.10 0.16 025 0.05 0.02 0.05 0.00 0.00 053 014
032 014 006 016 022 005 0.02 006 0.00 0.00 049 019
0.06 0.04 0.01 0.07 0.05 0.02 0.01 0.02 0.00 0.00 0.12 0.05
0.06 004 001 0.07 0.05 002 001 003 0.00 0.00 012 005
0.19 0.08 0.06 0.07 0.15 0.04 0.02 0.04 0.00 0.00 034 0.16
033 017 011 017 0.24 006 0.02 007 0.00 0.00 049 015
031 0.16 0.10 014 022 0.05 0.02 0.05 0.00 0.00 0.46 013
0.26 008 002 0.10 0.19 003 0.00 004 0.00 0.00 040 015
0.16 0.06 0.01 0.08 0.11 0.02 0.00 0.03 0.00 0.00 0.25 0.08
0.10 005 001 0.08 0.08 002 0.00 004 0.00 0.00 022 009
0.19 0.08 0.05 0.06 0.15 0.04 0.02 0.04 0.00 0.00 033 0.16
033 017 010 017 0.24 006 002 007 0.00 0.00 049 015
031 0.16 0.10 0.14 0.22 0.05 0.02 0.05 0.00 0.00 0.46 013
025 008 002 0.10 018 003 0.00 004 0.00 0.00 039 015
0.15 0.06 0.01 0.08 0.11 0.02 0.00 0.03 0.00 0.00 0.25 0.08
0.09 005 001 0.08 0.08 003 0.00 004 0.00 0.00 022 010
0.20 0.06 0.01 0.06 013 0.01 0.00 0.01 0.23 0.09 033 011
032 015 007 013 021 003 0.00 004 036 0.14 047 011
031 0.14 0.07 0.11 0.20 0.03 0.00 0.03 035 0.12 0.45 0.09
0.15 0.04 0.03 Xl nowi 0.12 0.02 0.01 0.02 017 o0 [ 0.25 011

0.06 0.03 0.00 0.03 0.03 0.01 0.00 0.00 0.07 0.02 0.12 0.04
005 003 000 0.04 0.04 001 0.00 001 0.06 0.02 013 005
0.01 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.01 0.03 001 0.06
023 0.06 0.06 0.06 018 0.05 0.03 0.06 030 0.18 038 017
0.34 012 0.09 0.12 0.25 0.06 0.04 0.08 0.44 0.20 053 0.15
023 0.05 0.02 0.07 0.15 0.01 0.00 0.02 027 0.10 030 0.08
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.03
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.17 0.05 0.01 0.07 0.11 0.01 0.00 0.01 0.00 0.00 033 0.10
0.14 003 001 0.08 011 002 001 004 001 0.00 025 018
0.08 0.01 0.00 0.05 0.08 0.01 0.00 0.02 0.01 0.00 017 0.15
0.06 004 003 0.04 0.06 003 001 004 0.00 0.00 013 017
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PSRI_sd
PSRI_var
S2REP_max
S2REP_mean
S2REP_med
S2REP_min
S2REP_sd
S2REP_var

SA d

SAVI_m

SAVI_sd
SAVI_var
TCB_max

TCB_med
TCB_min
TCB_sd
TCB_var
TCW_max
TCW_mean
TCW_med

in
TCW_sd
TCW_var
VH146_max
VH146_mean
VH146_med
VH146_min
VH146_sd
VH146_var
VH22_max
VH22_mean
VH22_med
VH22

VH44_max
VH44_mean
VH44_med
VH44_min
VH44_sd
VH44_var
VH95_max
VH95_mean
VH95_med

<
I
N
N
o

VH95_sd_sd

0.08
0.06
0.00
0.01
0.07
0.00
0.00
0.00
0.20
0.33
0.30
0.25
0.15
0.10
0.01
0.01
0.01
0.00
0.03
0.03
0.00
0.09
0.09
0.14
0.14
0.08
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.01
0.02
0.00
0.01
0.04
0.00
0.00
0.00
0.08
0.17
0.16
0.08
0.06
0.05
0.02
0.03
0.02
0.02
0.00
0.00
0.02
0.00
0.00
0.00
0.03
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.05
0.10
0.09
0.02
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.03
0.03
0.00
0.00
0.03
0.00
0.00
0.00
0.06
0.16
0.13
0.09
0.08
0.08
0.01
0.02
0.02
0.01
0.01
0.01
0.00
0.04
0.04
0.04
0.05
0.04
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

PSRI_sd
PSRI_var
S2REP_max
S2REP_mean
S2REP_med
S2REP_min
S2REP_sd
S2REP_var

SAVI_mean

SAVI_sd
SAVI_var
TCB_max
TCB_mean
TCB_med
TCB_min
TCB_sd
TCB_var
TCW_max
TCW_mean
TCW_med

m
TCW._sd
TCW_var
VH146_max
VH146_mean
VH146_med
VH146_min
VH146_sd
VH146_var
VH22_max
VH22_mean
VH22_med
VH22_m

SAVI_min

F
VH44_max
VH44_mean
VH44_med
VH44_min
VH44_sd
VH44_var
VH95_max
VH95_mean
VH95_med

T
N

VH95_sd_sd

0.04
0.04
0.00
0.00
0.02
0.00
0.00
0.00
0.15
0.22
0.21
0.17
0.10
0.08
0.04
0.04
0.05
0.01
0.02
0.03
0.01
0.08
0.08
0.11
0.09
0.07
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.05
0.04
0.02
0.02
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.00
0.01
0.02
0.02
0.01
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.03
0.05
0.04
0.03
0.02
0.03
0.01
0.03
0.03
0.03
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

SA ed

VH95_med

VH95_sd_sd
VH95_var

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

PSRI_sd
PSRI_var
S2REP_max
S2REP_mean
S2REP_med
S2REP_min
S2REP_sd
S2REP_var

v
=
=
)
x

SAVI_med
SAVI_|
SAVI_sd
SAVI_var
TCB_max
TCB
TCB_med
TCB_min
TCB_sd
TCB
TCW_max
TCW_mean
TCW_med

mi
TCW_sd
TCW_var
VH146_max
VH146_mean
VH146_med
VH146_min
VH146_sd
VH146_var
VH22_max
VH22_mean
VH22_med
VH22_m

B
VH44_max
VH44_mean
VH44_med
VH44_min
VH44_sd
VH44_var
VH95_max
VH95_mean
VH95_med

g
~

VH95_sd_sd

<
S
©
Im
<

0.17
0.15
0.04
0.30
0.40
0.09
0.08
0.03
0.34
0.48
0.46
0.38
0.23
0.20
0.00
0.00
0.00
0.01
0.02
0.04
0.00
0.11
0.13
0.19
0.24
0.21
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00
0.00
0.01
0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
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0.01
0.01
0.01
0.07
0.09
0.03
0.03
0.03
0.15
0.14
0.12
0.14
0.08
0.09
0.00
0.00
0.00
0.01
0.02
0.00
0.00
0.01
0.02
0.02
0.02
0.03
0.01
0.01
0.01
0.01
0.01
0.00
0.01
0.01
0.01
0.01
0.02
0.01
0.02
0.02
0.02
0.02
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00



0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 001 002
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 001 002
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 000 NA 0.00 000 0.00 NA NA NA 0.00 001
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 001
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 001
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 NA NA
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 001
0.00 000 000 NA 0.00 000 0.00 NA 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.00 000 000 0.00 0.00 000 0.00 001 0.00 0.00 0.00 002
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 001
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.02
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 001
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 000 NA 0.00 000 0.00 NA NA NA NA NA
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 001
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 001
0.00 000 000 0.00 0.00 000 0.00 000 0.00 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.00 000 000 NA 0.00 000 0.00 NA NA NA 0.00 0.00

XXXV



GLCM_VH95_dis
GLCM_VH95_ent
GLCM_VH95_homo
GLCM_VH95_mean
GLCM_VH95_sec
GLCM_VH95_var
GLCM_VV146_con
GLCM_VV146_cor
GLCM_VV146_dis
GLCM_VV146_ent
GLCM_VV146_homo
GLCM_VV146_mean
GLCM_VV146_sec
GLCM_VV146_var
GLCM_VV22_con
GLCM_VV22_cor
GLCM_VV22_dis
GLCM_VV22_ent
GLCM_VV22_homo
GLCM_VV22_mean
GLCM_VV22_sec
GLCM_VV22_var
GLCM_VV44_con
GLCM_VV44_cor
GLCM_VV44_diss
GLCM_VV44_ent
GLCM_VV44_homo
GLCM_VV44_mean
GLCM_VV44_sec
GLCM_VV44_var
GLCM_VV95_con
GLCM_VV95_cor
GLCM_VV95_dis
GLCM_VV95_ent
GLCM_VV95_homo
GLCM_VV95_mean
GLCM_VV95_sec
GLCM_VV95_var

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00

GLCM_VH95_dis
GLCM_VH95_ent
GLCM_VH95_homo
GLCM_VH95_mean
GLCM_VH95_sec
GLCM_VH95_var
GLCM_VV146_con
GLCM_VV146_cor
GLCM_VV146_dis
GLCM_VV146_ent
GLCM_VV146_homo
GLCM_VV146_mean
GLCM_VV146_sec
GLCM_VV146_var
GLCM_VV22_con
GLCM_VV22_cor
GLCM_VV22_dis
GLCM_VV22_ent
GLCM_VV22_homo
GLCM_VV22_mean
GLCM_VV22_sec
GLCM_VV22_var
GLCM_VV44_con
GLCM_VV44_cor
GLCM_VV44_diss
GLCM_VV44_entr
GLCM_VV44_homo
GLCM_VV44_mean
GLCM_VV44_sec
GLCM_VV44_var
GLCM_VV95_con
GLCM_VV95_cor
GLCM_VV95_dis
GLCM_VV95_ent
GLCM_VV95_homo
GLCM_VV95_mean
GLCM_VV95_sec
GLCM_VV95_var

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00

GLCM_VH95_dis
GLCM_VH95_ent
GLCM_VH95_homo
GLCM_VH95_mean
GLCM_VH95_sec
GLCM_VH95_var
GLCM_VV146_con
GLCM_VV146_cor
GLCM_VV146_dis
GLCM_VV146_ent
GLCM_VV146_homo
GLCM_VV146_mean
GLCM_VV146_sec
GLCM_VV146_var
GLCM_VV22_con
GLCM_VV22_cor
GLCM_VV22_dis
GLCM_VV22_ent
GLCM_VV22_homo
GLCM_VV22_mean
GLCM_VV22_sec
GLCM_VV22_var
GLCM_VV44_con
GLCM_VV44_cor
GLCM_VV44_diss
GLCM_\VV44_ent
GLCM_VV44_homo
GLCM_VV44_mean
GLCM_VV44_sec
GLCM_VV44_var
GLCM_VV95_con
GLCM_VV95_cor
GLCM_VV95_dis
GLCM_VV95_ent
GLCM_VV95_homo
GLCM_VV95_mean
GLCM_VV95_sec
GLCM_VV95_var

0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00

GLCM_VH95_dis
GLCM_VH95_ent
GLCM_VH95_homo
GLCM_VH95_mean
GLCM_VH95_sec
GLCM_VH95_var
GLCM_VV146_con
GLCM_VV146_cor
GLCM_VV146_ent
GLCM_VV146_homo
GLCM_VV146_mean
GLCM_VV146_sec
GLCM_VV146_var
GLCM_VV22_con
GLCM_VV22_cor
GLCM_VV22_dis
GLCM_VV22_ent
GLCM_VV22_homo
GLCM_VV22_mean
GLCM_VV22_sec
GLCM_VV22_var
GLCM_VV44_con
GLCM_VV44_cor
GLCM_VV44_diss
GLCM_VV44_ent
GLCM_VV44_homo
GLCM_VV44_mean
GLCM_VV44_sec
GLCM_VV44_var
GLCM_VV95_con
GLCM_VV95_cor
GLCM_VV95_dis
GLCM_VV95_ent
GLCM_VV95_homo
GLCM_VV95_mean
GLCM_VV95_sec
GLCM_VV95_var

GLCM_VV146_dis

0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00
0.00
0.00
0.00
0.00
0.00

XXXIX

0.01
0.01
0.01
0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

NA
0.00

NA
0.01
0.01
0.01
0.01
0.01
0.00
0.00

NA
0.01
0.01
0.01
0.00
0.01
0.00
0.00

NA
0.01
0.01
0.01
0.00
0.01
0.00



Table 33: R? and R values calculated with ALS mean, ALS max or ALS FHD and all Sentinel variables for the fishnet grid cell size 10x10 m without the higher subalpine zone.

ALS mean ALS max ALS FHD
Parameter Parameter
2

R R R | R erameter R R
B2_max 0.07 -0.27 0.09 -0.29 0.05 -0.23
B2_mean 0.16 -0.41 HEYAGEElD 0.18 -0.42 FEPAGEE] 0.16 -0.40
B2_med 0.16 SIr:lol B2 med 0.16 EOR:Ol B2 med 0.15 -0.39
B2_min 0.09 -0.30 FEPAglly 0.11 -0.34 BEPA)) 0.12 -0.34
B2_sd 0.06 -0.24 [EPAS) 0.06 -0.25 [EPAS 0.03 -0.16
B2_var 0.02 -0.14 FEVANELR 0.03 -0.16 FEPANELS 0.01 -0.11
B3_max 0.09 -0.30 [ EERE 0.11 -0.33 FEERE 0.10 -0.31
B3_mean 0.18 -0.42 BERENEED 0.22 -0.46 BEERNEED 0.22 -0.47
B3_med 0.19 -0.44 FEREES! 0.22 -0.46 FEERES 0.22 -0.47
B3_min 0.06 -0.24 BEEEnIL 0.09 -0.31 EEEEul] 0.12 -0.34
B3_sd 0.05 -0.23 FEERSS 0.06 -0.24 [FEERSS 0.03 -0.17
B3_var 0.02 -0.15 BEERELR 0.03 -0.18 [ EERVELR 0.02 -0.13
B4_max 0.16 ORI B4 max 0.16 SOR B4 max 0.10 -0.31
B4_mean 0.25 -0.50 PEZEEED 0.25 -0.50 BEEENEED! 0.17 -0.41
B4_med 0.23 SRR B4 med 0.22 -0.47 BEEEEE) 0.16 -0.40
B4_min 0.11 SOCEM B4_min 0.13 -0.36 ZEnll] 0.11 -0.33
B4 _sd 0.13 -0.35 [PEEESS 0.12 -0.34 [PEEESS 0.06 -0.24
B4 _var 0.04 -0.19 [FEEAVELS 0.04 -0.21 [EERVELS 0.03 -0.16
B5_max 0.11 -0.33 PR R 0.14 BURERE BS max 0.16 -0.40
B5_mean 0.17 X4l B5 mean 0.22 -0.46 [EEREED) 0.26 -0.51
B5_med 0.20 -0.44 FEER 0.23 -0.48 R 0.27 -0.52
B5_min 0.03 -0.18 FEEilly 0.07 -0.27 BRIl 0.10 -0.32
B5_sd 0.05 -0.22 PR 0.05 -0.23 PR 0.03 -0.18
B5_var 0.04 -0.19 [FEENEL 0.05 -0.21 FEERVELR 0.03 -0.18
B6_max 0.04 0.21 FEEEN 0.00 0.04 FEEEN 0.06 -0.24
B6_mean 0.02 0.15 QECEnEER 0.00 -0.01 BEOMnEED! 0.07 -0.27
B6_med 0.02 ([Nl B6 med 0.00 EONOEl B6 med 0.08 -0.29
B6_min 0.01 (\EPA B6_min 0.00 EOXoyl B6_min 0.03 -0.17
B6_sd 0.00 0.06 [ 0.00 (oNeZ 3 B6 sd 0.01 -0.12
B6_var 0.00 0.01 FEEAVELR 0.00 -0.02 FEEAVELS 0.02 -0.15
B7_max 0.07 0.27 PEVAENS 0.01 0.10 PEVAENS 0.04 -0.20

XL



B7_mean 0.05 0.23 BEYMuGELD 0.00 0.06 BEYMuGELD 0.05 -0.21
B7_med 0.05 (WX B7 med 0.00 (Xe[5 B7 med 0.05 -0.22
B7_min 0.03 [VRk B7 min 0.00 0.03 EEyAull 0.02 -0.14
B7_sd 0.00 (oXeyam B7 sd 0.00 0.05 Pyl 0.02 -0.12
B7_var 0.00 0.02 FEVAVELR 0.00 0.00 FEVAVELR 0.02 -0.15
B8_max 0.05 0.22 PEERENS 0.00 (WNe B8 max 0.05 -0.22
B8 mean 0.04 0.19 EEENEEN 0.00 0.01 pEENEEN 0.05 -0.22
B8 med 0.03 [INE:J B8 med 0.00 (lXe])ly B8 med 0.05 -0.23
B8_min 0.02 (WGl B8_min 0.00 ((Xe[ol B8 min 0.02 -0.14
B8_sd 0.00 [WXeEl B8 sd 0.00 (lXeyl B8 sd 0.01 -0.12
B8_var 0.00 -0.02 FEERVELR 0.00 -0.05 FEERVELS 0.02 -0.15
B8a_max 0.07 0.26 FEEERENS 0.01 0.10 FEEERENS 0.04 -0.21
B8a_mean 0.05 0.22 EEREMNEEN 0.00 0.05 pEEEMNEEN 0.05 -0.22
B8a_med 0.04 (Wwlol B8a med 0.00 (lXeZ3 B8a med 0.06 -0.24
B8a_min 0.03 0.17 EEEMull 0.00 0.02 g:EEMull 0.02 -0.14
B8a_sd 0.00 0.05 FEEERS 0.00 (NeZ 3 B8a sd 0.01 -0.12
B8a_var 0.00 0.00 FEEERVENR 0.00 -0.01 FERERVELS 0.02 -0.14
B11_max 0.05 SOvP B1l1l max 0.06 WLl B1l1l max 0.15 -0.39
B11_mean 0.04 SOMEN Bl1l mean 0.06 -0.25 QNN LT 0.15 -0.39
B11_med 0.05 S/wyl Bll med 0.07 L'yl B11l med 0.17 -0.41
B11_min 0.00 SO0l B11l_min 0.02 SONER Bl1l_min 0.06 -0.24
B11_sd 0.06 -0.24 [ EREE 0.03 -0.17 PN 0.03 -0.18
B11_var 0.06 -0.24 FEREERELR 0.04 -0.19 EENEYEIS 0.04 -0.21
B12_max 0.14 SN B12 max 0.14 -0.37 PR EN 0.16 -0.40
B12_mean 0.13 -0.36 RPN gEEl 0.14 -0.37 BENPAGEE]D 0.17 -0.41
B12_med 0.14 Yl B12 med 0.15 -0.38 PEERA G 0.17 -0.42
B12_min 0.03 SONVA B12 min 0.05 -0.23 vl 0.08 -0.27
B12_sd 0.13 SOl B12 sd 0.08 -0.29 FERRAS 0.06 -0.25
B12_var 0.09 SO0l B12 var 0.07 EOvyl B12 var 0.07 -0.26
DVI_max 0.00 0.03 FMAR e 0.06 0.09 FMARENe 0.02 -0.15
DVI_mean 0.00 W0k DVI_mean 0.07 (W0l DVI_mean 0.02 -0.14
DVI_med 0.00 SO0l DV med 0.06 (WNIom DV med 0.02 -0.14
DVI_min 0.00 S0Pl DVI_min 0.03 (0Koy DVI_min 0.01 -0.09
DVI_sd 0.00 -0.02 PG| 0.01 (oXeya DVI sd 0.01 -0.12
DVI_var 0.00 0.05 PEVIREL 0.00 0.08 FAIEVELS 0.02 -0.14

XLI



EVI_max 0.19 0.44 FIEVIRENS 0.14 0.38 FIAVRENS 0.04 0.21
EVI_mean 0.37 0.61 HAVIMlEEL 0.22 0.47 QRVAMulEL 0.06 0.25
EVI_med 0.36 0.60 FEVARgE 0.21 0.46 P EVARGEE 0.06 0.25
EVI_min 0.26 0.51 maviEully 0.15 (R} EVI_min 0.03 0.19
EVI_sd 0.02 -0.13 FAVE) 0.00 -0.07 FIEVEEE 0.00 -0.01
EVI_var 0.12 -0.34 FAVRELs 0.08 -0.29 RYNEL 0.03 -0.17
EVIRE1_max 0.03 WMVl EVIREL_max 0.04 VNl EVIREL_ max 0.01 0.11
EVIRE1_mean 0.09 (W2 EVIRE1_mean 0.08 (V¥ EVIRE1_mean 0.04 0.21
EVIRE1_med 0.09 (Vkl EVIREL med 0.10 (ol EVIREL med 0.04 0.21
EVIRE1_min 0.02 (WRY:m EVIREL_min 0.14 (VW EVIREL_min 0.02 0.13
EVIRE1_sd 0.01 (W&l EVIRE1 sd 0.00 (oNeZ’ EVIREL sd 0.00 0.06
EVIRE1 var 0.00 (UKol EVIRE1 var 0.00 -0.04 QAL 0.00 0.01
GNDVI_max 0.16 (el GNDVI_max 0.13 (V{8 GNDVI_max 0.06 0.24
GNDVI_mean 0.32 (VYA GNDVI_mean 0.21 (WISl GNDVI_mean 0.08 0.28
GNDVI_med 0.31 (Bl GNDVI_med 0.20 (WSl GNDVI_med 0.07 0.27
GNDVI_min 0.19 (lF:Y% GNDVI_min 0.13 (VS GNDVI_min 0.03 0.18
GNDVI_sd 0.05 VWXl GNDVI_sd 0.03 -0.16 FE\InVAR 0.00 -0.03
GNDVI_var 0.05 S0P GNDVI_var 0.03 SOk GNDVI_var 0.00 -0.06
MSAVI_max 0.20 (Il MSAVI_max 0.15 0.39 BVNAV M EY 0.05 0.23
MSAVI_mean 0.33 (WYl MSAVI_mean 0.22 0.47 BVYSA\YEGGEL 0.07 0.27
MSAVI_med 0.30 0.55 YNA\YBEL! 0.20 0.45 RYINA\YREL! 0.07 0.27
MSAVI_min 0.25 ({0l MSAVI_min 0.16 (-0l MISAVI_min 0.05 0.22
MSAVI_sd 0.14 -0.38 FIVSAVAES: 0.09 -0.30 BIVSAVAR! 0.02 -0.15
MSAVI_var 0.10 -0.31 RVNAYRYETLS 0.07 -0.27 RUNAIRZLS 0.02 -0.15
MSAVI2_max 0.19 [IF:Xl MSAVI2_max 0.15 (T MSAVI2_max 0.05 0.23
MSAVI2_mea 0.29 0.54 RYNA\YPARIEE! 0.21 (-5 MSAVI2_mean 0.08 0.28
MSAVI2_med 0.27 (Yl MSAVI2_med 0.19 (- VISAVI2_med 0.07 0.27
MSAVI2_min 0.15 0.38 YINA\YPAI] 0.11 ((EEW MSAVI2_min 0.04 0.19
MSAVI2_sd 0.09 -0.30 PUVSANAPAR 0.06 -0.25 BNV 0.02 -0.14
MSAVI2_var 0.06 -0.25 RVNAIPARYET: 0.05 SOWERW MSAVI2_var 0.02 -0.14
MSI_max 0.10 0.31 FWUSEEN 0.05 0.22 FWUSEEN 0.02 0.14
MSI_mean 0.21 0.45 EVYSEnEER 0.09 0.30 EVSEuEER 0.03 0.18
MSI_med 0.19 0.43 VISl 0.08 0.29 VSl 0.03 0.18
MSI_min 0.24 (Rl VISI_min 0.10 (VY MISI_min 0.04 0.19
MSI_sd 0.17 -0.41 FIVSIEES) 0.06 -0.25 PSR 0.02 -0.15
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MSI_var 0.12 -0.34 BVSAELR 0.05 -0.23 VYNSRI 0.02 -0.15
NDII5_max 0.22 -0.47 BBJIEMGEYS 0.09 SOR{om NDIIS"max 0.03 -0.18
NDII5_mean 0.19 UKl NDII5_mean 0.07 SOy NDII5_mean 0.03 -0.16
NDII5_med 0.18 -0.42 B\InJIEM L 0.07 ROl NDIIS_med 0.02 -0.15
NDII5_min 0.10 VY NDII5_min 0.04 SOl NDIIS_min 0.01 -0.11
NDII5_sd 0.11 SRR NDIIS sd 0.05 EOvEl NDIIS sd 0.02 -0.15
NDII5_var 0.07 -0.27 R\BJIEWYEIS 0.04 -0.19 ENIIIEAEL 0.02 -0.13
NDII7_max 0.27 -0.52 ENIJIVAInEYS 0.14 -0.37 RNJIVAERS 0.05 -0.22
NDII7_mean 0.25 -0.50 E\IJIVAnEEL 0.13 SO NDII7_mean 0.04 -0.21
NDII7_med 0.23 SOr: ) NDII7 med 0.12 ROEZ NDII7_med 0.04 -0.20
NDII7_min 0.16 -0.40 \IsJivAasily 0.08 EOWLEl NDII7_min 0.02 -0.16
NDII7_sd 0.18 -0.43 F\UBJIA) 0.10 ey NDII7 sd 0.04 -0.20
NDII7_var 0.11 -0.33 R\JIVAELS 0.07 -0.26 ENDBIYAE] 0.03 -0.18
NDVI_max 0.20 0.45 BIBAAMEDS 0.15 0.39 BBAAEDS 0.05 0.23
NDVI_mean 0.33 (WYl NDVI_mean 0.22 (lF:y NDVI_mean 0.07 0.27
NDVI_med 0.30 (Bl NDVI_med 0.20 0.45 M/ 0.07 0.27
NDVI_min 0.25 ({0l NDVI_min 0.16 (W0l NDVI_min 0.05 0.22
NDVI_sd 0.14 SR NDVI sd 0.09 (vl NDVI sd 0.02 -0.15
NDVI_var 0.10 -0.31 E\IR'Els 0.07 -0.27 BNDVIRELS 0.02 -0.15
NDVI6_max 0.28 (WSER NDVI6_max 0.20 (-7 NDVI6_max 0.06 0.24
NDVI6_mean 0.38 (VYW NDVI6_mean 0.25 (VRO NDVI6_mean 0.09 0.29
NDVI6_med 0.37 (WY NDVI6_med 0.25 (VU NDVI6_med 0.09 0.30
NDVI6_min 0.31 (VIS NDVI6_min 0.21 (WIS NDVI6_min 0.06 0.25
NDVI6_sd 0.06 w2 NDVI6 sd 0.04 Replol NDVI6_sd 0.01 -0.08
NDVI6_var 0.06 VP2 NDVI6_var 0.04 -0.21 ENIISRYELS 0.01 -0.10
NDVI7_max 0.20 (-’ NDVI7_max 0.15 0.39 E\MVAEPs 0.05 0.23
NDVI7_mean 0.33 (VYA NDVI7_mean 0.23 0.48 E\\IVARGEEL 0.08 0.29
NDVI7_med 0.31 (B NDVI7_med 0.22 Wyl NDVI7_med 0.08 0.28
NDVI7_min 0.25 ({0l NDVI7_min 0.18 Iyl NDVI7_min 0.06 0.24
NDVI7_sd 0.15 SVl NDVI7_sd 0.10 ROyl NDVI7_sd 0.03 -0.17
NDVI7_var 0.10 -0.31 E\D\IVAELS 0.08 -0.28 B\DVIVAE]S 0.03 -0.17
NDVI8a_max 0.19 0.44 ENIIEERES 0.15 0.39 ENEERNES 0.05 0.23
NDVI8a_mea 0.33 0.57 ENDNVEERGEE 0.23 0.48 EEERGEED 0.08 0.29
NDVI8a_med 0.30 0.55 EnEERNEE 0.22 0.47 EEEMNED 0.08 0.28
NDVI8a_min 0.24 0.49 EIVEERll 0.17 (WF:yl NDVI8a_min 0.05 0.23
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NDVI8a_sd 0.15 SRR NDVI8a sd 0.10 -0.31 BNIAAEERS:! 0.03 -0.16
NDVI8a_var 0.09 -0.30 E\P\IEERELS 0.08 -0.27 BNDMEERELS 0.03 -0.16
NDWI_max 0.19 SOx:r NDWI - max 0.13 RUEEE NDWI_max 0.03 -0.18
NDWI_mean 0.32 -0.57 ENAVIEEER 0.21 SRSl NDWI_mean 0.08 -0.28
NDWI_med 0.31 SVEEE NDWI_med 0.20 -0.45 BNV L 0.07 -0.27
NDWI_min 0.16 Sox:lol NDWI_min 0.13 -0.36 AWMl 0.06 -0.24
NDWI_sd 0.05 Sowl NDWI sd 0.03 EON Il NDWI sd 0.00 -0.03
NDWI_var 0.05 -0.22 EAVYIRYELS 0.03 -0.18 BWVIR'C]S 0.00 -0.06
NLVI_max 0.01 [oXo:: NLVI_max 0.02 (ONER NLVI_max 0.01 0.09
NLVI_mean 0.23 0.48 EVAYENEEND 0.19 0.43 EVAYENEEND 0.08 0.29
NLVI_med 0.34 [ NLVI med 0.25 0.50 FIVAVARRIEE) 0.11 0.33
NLVI_min 0.22 0.47 VIR il 0.15 (VM NLVI_min 0.06 0.24
NLVI_sd 0.00 oo NLVI sd 0.00 0.06 F\AVAREG 0.00 0.04
NLVI_var 0.00 -0.04 FNAVRVELS 0.00 (ONo)M NLVI_var 0.00 0.00
PSRI_max 0.16 SO0 PSR|-max 0.10 -0.32 B ENERS 0.03 -0.17
PSRI_mean 0.12 -0.35 S NEOEED! 0.10 EUCYA PSRI_mean 0.03 -0.16
PSRI_med 0.07 SISl PSRI_med 0.06 -0.25 BEANREE! 0.01 -0.12
PSRI_min 0.06 SOpZ PSRI_min 0.06 -0.24 BES M) 0.01 -0.12
PSRI_sd 0.08 -0.28 FIESEEG 0.04 -0.20 PSS 0.01 -0.10
PSRI_var 0.07 -0.26 FESAERR 0.04 EUwlolm PSRI var 0.01 -0.12
S2REP_max 0.00 -0.04 FPAEAED: 0.00 -0.03 PR 0.00 0.04
S2REP_mean 0.01 0.10 BPANE G EED 0.00 0.05 BAYENEEND 0.01 0.12
S2REP_med 0.07 0.27 AN ! 0.02 0.15 BYNnEE 0.01 0.08
S2REP_min 0.00 0.05 BEyAEN) 0.00 (002 RVI_min 0.02 0.12
S2REP_sd 0.00 -0.06 FSPAE G 0.00 -0.05 FRAVESS) 0.02 -0.12
S2REP_var 0.00 SONorl S2REP var 0.00 -0.02 FRVEVELR 0.01 -0.10
SAVI_max 0.20 0.45 EAAIEUE 0.15 0.39 AN 0.00 -0.01
SAVI_mean 0.33 0.57 BAVINuEED 0.22 0.47 AN GEER 0.00 0.03
SAVI_med 0.30 0.55 BV E) 0.20 0.45 FEpARE ! 0.01 0.09
SAVI_min 0.25 [0l SAVI_min 0.16 0.40 YA 0.00 0.01
SAVI_sd 0.14 -0.38 FAVAE 0.09 -0.30 FSPANEAES 0.00 -0.02
SAVI_var 0.10 -0.31 BAVIRELR 0.07 -0.27 BYANAAELS 0.00 -0.01
TCB_max 0.01 SNl TCB_max 0.05 -0.22 BIAVUBNEDS 0.05 0.23
TCB_mean 0.01 -0.09 mIe:EuEE] 0.05 -0.23 BAVAEREER 0.07 0.27
TCB_med 0.01 SOk TCB med 0.06 ESWEl SAV| med 0.07 0.27
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TCB_min 0.00 (OXe[ol TCB_min 0.02 -0.13 AVl 0.05 0.22
TCB_sd 0.03 SNl TCB sd 0.02 -0.14 FSAVARE) 0.02 -0.15
TCB_var 0.03 -0.18 WIC:AE]S 0.03 -0.18 FSAVARVELS 0.02 -0.15
TCW_max 0.01 (oo TCWW._max 0.01 (INKR TBC_max 0.12 -0.35
TCW_mean 0.10 (Y TCW_mean 0.09 ({0l TBC_mean 0.14 -0.38
TCW_med 0.10 0.32 e 0.09 [V TBC_med 0.15 -0.39
TCW_min 0.15 (VM TCW_min 0.12 (VB TBC_min 0.05 -0.22
TCW_sd 0.14 SO TCW sd 0.09 -0.30 FElenel 0.02 -0.16
TCW_var 0.08 -0.29 HIQWVAELR 0.07 -0.26 BIEIONELS 0.03 -0.19
PSRI_max 0.16 -0.40 SR 0.10 ROyl TCW_ max 0.05 0.21
PSRI_mean 0.12 -0.35 EENENEEND 0.10 SRy TCW_mean 0.13 0.36
PSRI_med 0.07 -0.26 FE R 0.06 ROvLl TCW med 0.13 0.36
PSRI_min 0.06 SOpZl PSRI_min 0.06 -0.24 RISV EuI 0.14 0.38
PSRI_sd 0.08 -0.28 P EEG 0.04 -0.20 FeWA) 0.06 -0.25
PSRI_var 0.07 -0.26 BEAELR 0.04 -0.20 BLeVAEL 0.06 -0.25
VH146_max 0.00 (WX VH146_max 0.00 (WX VH146_max 0.01 0.11
VH146_mean 0.00 (VNok VH146_mean 0.00 0Nkl VH146_mean 0.02 0.12
VH146_med 0.00 (IXek VH146_med 0.00 ()N0i VH146_med 0.02 0.12
VH146_min 0.00 (WNePl \VH146_min 0.00 (WNoyl \VH146_min 0.02 0.13
VH146_sd 0.00 [(XeEl V/H146 sd 0.00 (Ve VH146_sd 0.00 0.05
VH146_var 0.00 (VoA \VH146 var 0.00 (ONopll \VH146 var 0.00 0.04
VH22_max 0.00 (ONopAl \/H22 max 0.00 (ONepAl \/H22 max 0.03 0.18
VH22_mean 0.00 (VNP \VH22_ mean 0.00 (0Noyl \VH22_mean 0.04 0.19
VH22_med 0.00 (WXopAs \/H22 med 0.00 ooyl \/H22 med 0.04 0.19
VH22_min 0.00 0.02 RYizPPAal 0.00 (VNoyA VH22_min 0.04 0.19
VH22_sd 0.00 [OXeE \V/H22 sd 0.00 (ONeEl \V/H22 sd 0.01 0.10
VH22_var 0.00 (0N \VVH22 var 0.00 (0Noy \VH22 var 0.00 0.07
VH44_max 0.00 (OXo N \VH44 _max 0.00 0.01 PVREEEEYE 0.02 0.13
VH44_mean 0.00 (W0k VH44 mean 0.00 (00l \VH44 mean 0.02 0.15
VH44_med 0.00 (OXok \/H44 "med 0.00 ooy \/H44 "med 0.02 0.15
VH44_min 0.00 [(Xok VH44 _min 0.00 (WX}l VH44_min 0.03 0.16
VH44 _sd 0.00 ookl \/H44 "sd 0.00 (oXeya \/H44 sd 0.00 0.05
VH44 _var 0.00 WXy \VH44_var 0.00 0.01 RYREZRYELS 0.00 0.04
VH95_max 0.00 0.01 P\VEEERENS 0.00 0.01 P\VREERENS 0.01 0.11
VH95_mean 0.00 (0Ne[ol VHOS5 mean 0.00 0.00 BYizEEMnEED! 0.02 0.13
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VH95_med 0.00 (oXe[oly V/HOS5 med 0.00 (oXeJoly V/HOS5 med 0.02 0.13
VH95_min 0.00 (0Nok VVHO5_min 0.00 0.01 RYzEEEul 0.02 0.14
VH95_sd 0.00 (oXeZ’ \/HS5 sd 0.00 (oNeZ \V/HS5 sd 0.00 0.05
VH95_var 0.00 0.03 RYGEERELS 0.00 (VNeEl VHO5_var 0.00 0.03
VV146_max 0.00 (ONo[o \V/\/146_max 0.00 (ONe[ol \V/\/146_max 0.01 0.11
VV146_mean 0.00 0.02 AN TEET 0.00 WKyl \/V/146_mean 0.01 0.12
VV146_med 0.00 0.07 AR L 0.00 0.07 AR L 0.01 0.12
VV146_min 0.00 0.01 ARG 0.00 0.01 ARG 0.02 0.12
VV146_sd 0.00 (oXe[ol \/\/146 sd 0.00 (oNe[ol \/\/146 sd 0.00 0.05
VV146_var 0.00 0.01 RANEIYETS 0.00 0.01 RANEIYETS 0.00 0.03
VV22_max 0.00 0.07 PVAPZAED 0.00 0.07 PVAPIANGED 0.03 0.17
VV22_mean 0.00 0.01 RAPPENEEN 0.00 0.01 RAPPENEE] 0.04 0.19
VV22_med 0.00 0.01 PVAPRA =) 0.00 0.01 PVAPRA =) 0.04 0.19
VV22_min 0.00 (UKo} V22 _min 0.00 0.01 RAP¥anil) 0.04 0.19
VV22_sd 0.00 (oXe[oly \V/\/22 sd 0.00 (oNeJol \/\/22 sd 0.01 0.11
VV22_var 0.00 (Do \/\/22 var 0.00 0oyl \/V22_var 0.00 0.05
VV44_max 0.00 0.03 PVAZZEENS 0.00 (WeEl \/\/44 "max 0.01 0.12
VV44_mean 0.00 0.03 BAZY e 0.00 0.03 BAZY e 0.02 0.14
VV44_med 0.00 (oXekm \/\/44 “med 0.00 0.01 RAVZY e L=Ne! 0.02 0.14
VV44_min 0.00 0.02 RAZZ ol 0.00 0.02 RAZZ sl 0.02 0.15
VV44 sd 0.00 0.02 FVAVZZESG| 0.00 0.02 FVAVZZEG| 0.00 0.05
VV44 _var 0.00 0.01 RAZYRYETS 0.00 0.01 RAZYRYETS 0.00 0.04
VV95_max 0.00 0.01 PYAEEREN 0.00 0.01 PYAEEREN 0.01 0.09
VV95_mean 0.00 0.00 RAEEENEEN 0.00 0.00 RAEEENEED 0.01 0.12
VV95_med 0.00 0.00 PVAVEER 6! 0.00 0.00 PVAVEER =) 0.01 0.12
VV95_min 0.00 0.00 RAEEEnI 0.00 0.00 RAEEEnIl 0.02 0.13
VV95_sd 0.00 0.03 PVAVEERG! 0.00 0.03 PVAVEERG! 0.00 0.04
VV95_var 0.00 0.03 PVAEERVELS 0.00 0.03 RAEERY]S 0.00 0.02
GLCM_VH146_con 0.00 (W0l GLCM_VH146_con 0.00 (N0l GLCM_VH146_con 0.00 0.02
GLCM_VH146_cor 0.00 SN0yl GLCM_VH146_cor 0.00 (N0 GLCM_VH146_cor 0.00 0.00
GLCM_VH146_dis 0.00 [lXey GLCM_VH146_dis 0.00 (Je0l GLCM_VH146_dis 0.00 0.06
GLCM_VH146_eng 0.00 SO0l GLCM_VH146_eng 0.00 WXyl GLCM_VH146_eng 0.02 -0.13
GLCM_VH146_ent 0.00 WXy GLCM_VH146_ent 0.00 WXyl GLCM_VH146_ent 0.02 0.13
GLCM_VH146_homo 0.00 (WKl GLCM_VH146_homo 0.00 (V) GLCM_VH146_homo 0.01 -0.10
GLCM_VH146_mean 0.00 WXy GLCM_VH146_mean 0.00 (WXl GLCM_VH146_mean 0.03 0.16
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GLCM_VH146_var 0.00 (lN0k GLCM_VH146_var 0.00 ()Mol GLCM_VH146_sd 0.00 0.06
GLCM_VH146_sec 0.00 [INok GLCM_VH146_sec 0.00 (N0l GLCM_VH146_sec 0.02 -0.13
GLCM_VH22_con 0.00 ((Ne[ol GLCM_VH22_con 0.00 ()oyl GLCM_VH22_con 0.00 0.01
GLCM_VH22_cor 0.00 SOl GLCIMV/H22 cor 0.00 )Xoyl GLCM_VH22_cor 0.00 -0.02
GLCM_VH22_dis 0.00 ((e[)l GLCM_VH22_dis 0.00 (Ve GLCM_VH22_dis 0.00 0.05
GLCM_VH22_eng 0.00 S GLCM_VH22_eng 0.00 RSPl GLCM_VH22_eng 0.02 -0.14
GLCM_VH22_ent 0.00 (Nl GLCM_VH22_ent 0.00 (Ve GLCM_VH22_ent 0.02 0.14
GLCM_VH22_homo 0.00 (lNekl GLCM_VH22_homo 0.00 Vel GLCM_VH22_homo 0.01 -0.11
GLCM_VH22_mean 0.00 (Nl GLCM_VH22_mean 0.00 (0Pl GLCM_VH22_mean 0.05 0.22
GLCM_VH22_var 0.00 (NS GLCM_VH22_var 0.00 (V0 GLCM_VH22_sd 0.00 0.06
GLCM_VH22_sec 0.00 (Nl GLCM_VH22_sec 0.00 (Ve GLCM_VH22_sec 0.02 -0.14
GLCM_VH44 _con 0.00 (Nl GLCM_VH44_con 0.00 (lopl GLCM_VH44 _con 0.00 0.04
GLCM_VH44_cor 0.00 SOy GLCM_VH44 cor 0.00 (0Pl GLCM_VH44_cor 0.00 0.00
GLCM_VH44_dis 0.00 (WKl GLCM_VH44_diss 0.00 (N0 GLCM_VH44_dis 0.01 0.07
GLCM_VH44_eng 0.00 (lXeyl GLCM_VH44_eng 0.00 SO GLCM_VH44_eng 0.03 -0.17
GLCM_VH44_ent 0.00 [lXs} GLCM_VH44_ent 0.00 (Ve GLCM_VH44_ent 0.03 0.17
GLCM_VH44_homo 0.00 (le[) GLCM_VH44 _homo 0.00 (N0l GLCM_VH44 _homo 0.02 -0.12
GLCM_VH44 _mean 0.00 (W00l GLCM_VH44 mean 0.00 (W7l GLCM_VH44 mean 0.04 0.21
GLCM_VH44_var 0.00 (W)l GLCM_VH44_var 0.00 ()oyl GLCM_VH44 sd 0.01 0.08
GLCM_VH44_sec 0.00 (Wl GLCM_VH44_sec 0.00 (VN0 GLCM_VH44_sec 0.03 -0.17
GLCM_VH95_con 0.00 (WNe[) GLCM_VH95_con 0.00 (V0 GLCM_VH95_con 0.00 0.00
GLCM_VH95_cor 0.00 (WKl GLCM_VH95_cor 0.00 (WX GLCM_VH95_cor 0.00 -0.01
GLCM_VH95_dis 0.00 (e[l GLCM_VH95_dis 0.00 (N0 GLCM_VH95_dis 0.00 0.02
GLCM_VH95_eng 0.00 oyl GLCM_VHS5 eng 0.00 RSNyl GLCM_VH95_eng 0.01 -0.11
GLCM_VH95_ent 0.00 ((e[)l GLCM_VH95_ent 0.00 (V0El GLCM_VH95_ent 0.01 0.11
GLCM_VH95_homo 0.00 (ls[)l GLCM_VH95_homo 0.00 (VN GLCM_VH95_homo 0.01 -0.08
GLCM_VH95_mean 0.00 (el GLCM_VH95_mean 0.00 (M)l GLCM_VH95_mean 0.02 0.15
GLCM_VH95_var 0.00 (lXsyl GLCM_VH95_var 0.00 (0l GLCM_VH95_sd 0.00 0.02
GLCM_VH95_sec 0.00 ((Ns[0l GLCM_VH95_sec 0.00 (JOE GLCM_VH95_sec 0.01 -0.11
GLCM_VV146_con 0.00 ((Ne[)l GLCM_VV146_con 0.00 (ol GLCM_VV146_con 0.00 0.02
GLCM_VV146_cor 0.00 SOl GLCM_VV146_cor 0.00 (e GLCM_VV146_cor 0.00 -0.02
GLCM_VV146_dis 0.00 (e[l GLCM_VV146_dis 0.00 (Nl GLCM_VV146_dis 0.00 0.05
GLCM_VV146_eng 0.00 (lXeyl GLCM_VV146_eng 0.00 SOl GLCM_VV146_eng 0.01 -0.10
GLCM_VV146_ent 0.00 [lXskl GLCM_VV146_ent 0.00 (0l GLCM_VV146_ent 0.01 0.10
GLCM_VV146_homo 0.00 (W)l GLCM_VV146_homo 0.00 (0l GLCM_VV146_homo 0.01 -0.08
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GLCM_VV146_mean 0.00 (X GLCM_VV146_mean 0.00 (1INl GLCM_VV146_mean 0.03 0.17
GLCM_VV146_var 0.00 (N GLCM_VV146_var 0.00 (Nol GLCM_VV146_sd 0.00 0.05
GLCM_VV146_sec 0.00 (X GLCM_VV146_sec 0.00 (WXl GLCM_VV146_sec 0.01 -0.11
GLCM_VV22_con 0.00 ((Neol GLCM_VV22_con 0.00 (V{0 GLCM_VV22_con 0.00 0.00
GLCM_VV22_cor 0.00 SV GLCM_VV22_cor 0.00 RN GLCM_VV22_cor 0.00 -0.01
GLCM_VV22_dis 0.00 (NIl GLCM_VV22_dis 0.00 (NPl GLCM_VV22_dis 0.00 0.03
GLCM_VV22_eng 0.00 (el GLCM_VV22_eng 0.00 RO GLCM_VV22_eng 0.01 -0.12
GLCM_VV22_ent 0.00 (Wl GLCM_VV22_ent 0.00 (V0El GLCM_VV22_ent 0.01 0.11
GLCM_VV22_homo 0.00 (Xl GLCM_VV22_homo 0.00 N0l GLCM_VV22_homo 0.01 -0.08
GLCM_VV22_mean 0.00 (el GLCM_VV22_mean 0.00 oyl GLCM_VV22_mean 0.06 0.24
GLCM_VV22_var 0.00 (WXe)l GLCM_VV22_var 0.00 ()Xol GLCM_VV22 sd 0.00 0.03
GLCM_VV22_sec 0.00 (WXl GLCM_VV22_sec 0.00 (Ve GLCM_VV22_sec 0.02 -0.12
GLCM_VV44_con 0.00 (lXekl GLCM_VV44_con 0.00 )Xoyl GLCM_VV44_con 0.00 0.02
GLCM_VV44_cor 0.00 SOV GLCM_VV44_cor 0.00 ROEN GLCM_VV44_cor 0.00 -0.01
GLCM_VV44_dis 0.00 (X GLCM_VV44_diss 0.00 (NPl GLCM_VV44_dis 0.00 0.06
GLCM_VV44_eng 0.00 (ol GLCM_VV44_eng 0.00 ROl GLCM_VV44_eng 0.02 -0.14
GLCM_VV44_ent 0.00 (XX GLCM_VV44 ent 0.00 (VEl GLCM_VV44 _ent 0.02 0.13
GLCM_VV44_homo 0.00 (N0l GLCM_VV44_homo 0.00 (Nol GLCM_VV44_homo 0.01 -0.10
GLCM_VV44_mean 0.00 Xk GLCM_VV44_mean 0.00 Wyl GLCM_VV44_mean 0.04 0.20
GLCM_VV44_var 0.00 (VX0 GLCM_VV44 _var 0.00 (NPl GLCM_VV44_sd 0.00 0.06
GLCM_VV44_sec 0.00 WXkl GLCM_VV44_sec 0.00 VX'Vl GLCM_VV44_sec 0.02 -0.14
GLCM_VV95_con 0.00 (Vo) GLCM_VV95_con 0.00 (W{oPl GLCM_VV95_con 0.00 0.00
GLCM_VV95_cor 0.00 [WXe/l GLCM_VV95_cor 0.00 (Vo0 GLCM_VV95_cor 0.00 -0.01
GLCM_VV95_dis 0.00 ((el GLCM_VV95_dis 0.00 ()NoPl GLCM_VV95_dis 0.00 0.01
GLCM_VV95_eng 0.00 [lXekl GLCM_VV95_eng 0.00 RO GLCM_VV95_eng 0.01 -0.09
GLCM_VV95_ent 0.00 (WXl GLCM_VV95_ent 0.00 ()oPl GLCM_VV95_ent 0.01 0.09
GLCM_VV95_homo 0.00 [lXel GLCM_VV95_homo 0.00 Xyl GLCM_VV95_homo 0.00 -0.06
GLCM_VV95_mean 0.00 (Nl GLCM_VV95_mean 0.00 (N0l GLCM_VV95_mean 0.02 0.15
GLCM_VV95_var 0.00 (lXekl GLCM_VV95_var 0.00 ()Xol GLCM_VV95_sd 0.00 0.02
GLCM_VV95_sec 0.00 (WX GLCM_VV95_sec 0.00 WXyl GLCM_VV95_sec 0.01 -0.09
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Table 34: R? and R values calculated with the GEDI vegetation parameters and the Sentinel variables. The GEDI plots are utilized to extract the values of the Sentinel
variables, as well as the values of the ALS mean, ALS max and ALS FHD dataset. The correlation between the ALS values and the Sentinel variables confined to the GEDI
plots is also calculated.

Parameter Parameter

| GEDl | Al |

RH100 Parameter FHD Parameter
R R R R
B2_max 0.02 -0.14 0.04 -0.20 -0.21 P
B2_mean 0.05 -0.23 0.16 -0.40 F:PAGEED 0.06 -0.24 0.16 | -0.40 F:PAGEED 0.06 -0.24
B2_med 0.05 -022 0.16 -0.40 FU:PAGES 0.05 -023 0.17 -0.41 PFEPAGEE 0.05 -0.23
B2_min 0.04  -020 0.13 -0.36 [FlPALIY 0.05 -0.23  0.07 | -0.26 [FlPALIY 0.04  -0.20
B2_sd 001 -011 0.02 -0.14 Fl:PASC 0.01 -011 0.04 -0.20 FlPAE 0.02 -0.13
B2_var 0.01 -0.12 0.02 -0.14 F:PANVElS 0.02 -0.13 0.03 | -0.17 F:PANVElS 0.02 -0.13
B3_max 0.04 -019 0.07 -0.27 FEEEGENS 0.04 -021 0.07 -0.27 FUEERGENS 0.04 -0.19
B3_mean 0.07  -0.26  0.19 -0.44 FC:EEGEED 0.09  -030 0.18 | -0.42 FC:EREGEED 0.06 -0.25
B3_med 0.07 -027 020 -0.45 BUERGEE 0.09 -030 0.19 -0.44 PFEERGIEC 0.07 -0.26
B3_min 0.04 -020 0.11 -0.32 FEERHIG 0.06 -0.24 0.03  -0.18 F:EER;IY 0.03  -0.16
B3_sd 0.01 -011 0.02 -0.15 F:ERS 0.02 -012 0.06 -0.25 F:ERS 0.02 -0.13
B3_var 0.01  -012  0.02 -0.15 FEERVEL 0.02  -013  0.05 | -0.21 FEERVEL 0.02  -0.14
B4_max 0.05 -0.23 0.09 -0.30 FEEEGEN 0.06 -0.25 0.07 -0.27 FEEEGEN 0.07 -0.26
B4_mean 0.07 -0.26 0.18 -0.42 FEZEGEEL 0.08 -0.28 0.15  -0.38 FEEEGEElY 0.08 -0.28
B4_med 006 -024 018 -0.42 FUEEEEE 006 -025 0.16 -0.39 PFIEERIEE 0.07 -0.26
B4_min 0.05  -0.22  0.12 -0.34 FEEEGIY 0.06 -0.24 0.04  -0.21 PFEEEHIY 0.04  -0.21
B4 _sd 0.03 -019 0.05 -0.23 FLEES 0.04 -021 0.07 -0.26 FEESe 0.05 -0.23
B4_var 0.03 -0.17 0.05 -0.21 FEZEVElS 0.03 -0.18 0.06 -0.24 FEEAVElS 0.04 -0.19
B5_max 0.04 -0.21 0.08 -0.29 FEENHEN 0.06 -0.25 0.08 -0.28 FEENEN 0.04 -0.21
B5_mean 0.07 -0.27 0.18 -0.43 [FiEERulEEN 0.11 -0.33 0.15  -0.39 [FiEERuEER 0.06 -0.25
B5_med 0.08 -0.28 0.20 -0.45 FU:ERGES 0.11 -033 0.17 -0.41 FEEEGEE 0.07 -0.27
B5_min 0.04 -019 0.08 -0.28 F:ENul 0.06 -0.25 0.02 | -0.13 FEEN;IY 0.02 -0.15
B5_sd 0.00 -0.07 0.01 -0.09 FEERS. 0.01 -0.08 0.05 -0.23 F:ERS 0.01 -0.09
B5_var 0.01 -0.08 0.01 -0.11 FEEREL 0.01  -0.09 0.05 | -0.23 FE:ERVEL 0.01  -0.11
B6_max 0.00 0.00 0.00 -0.03 FEEEGENS 0.01 -0.08 0.02 -0.13 FEERGEN 0.01  0.09
B6_mean 0.00 -0.06 0.01 -0.12 FEEEGEED 0.02  -013  0.03 | -0.16 FEEEGEED 0.00  0.05
B6_med 0.00 -0.07 0.02 -0.13 FEERGEE 0.02 -0.13 0.03 -0.19 FEEREE) 0.00 0.03
B6_min 0.01 -0.08 0.01 -0.11 FEEEE;I 0.02 -0.13  0.00 @ -0.05 BRI 0.00  0.00
B6_sd 0.01 0.08 0.01 0.08 FEEES 0.00 0.03 0.02 -0.13 FrERe 0.01  0.08
B6_var 0.00 0.06 0.00 0.05 FEEAELR 0.00 0.02 0.02 | -0.14 FEEAELR 0.00 0.06
B7_max 0.00 0.01 0.00 -0.01 FEFAGEN 0.00 -0.06 0.01 -0.11 FEFAGENS 001 011
B7_mean 0.00 -0.03 0.00 -0.07 FEEAGEED 0.01  -0.09 0.02 | -0.13 FEFAGEED 0.01 0.08
B7_med 0.00 -0.03 0.01 -0.07 FEFAGES 0.01 -0.09 0.02 -0.15 FEFAGIES 0.01  0.08
B7_min 0.00 -0.06 0.01 -0.09 FlFAuly 0.01  -0.11  0.00 @ -0.04 PFEFAniy 0.00 0.03
B7_sd 0.01 0.07 0.01 0.07 FEZA 0.00 0.03 0.01 -0.12 F:FAS 0.01 0.07
B7_var 0.00 0.05 0.00 0.05 FEVAVElS 0.00 0.02 0.01 | -0.12 FEFAVEL 0.00 = 0.06

iI
Q
x

x %
4
N I
3
)
3
=
4

B2
B2_mean
B2_med
B2_min
B2_sd
B2_var
B3_max
B3_mean
B3_med
B3_min
B3_sd
B3_var
B4_max
B4_mean
B4_med
B4_min
B4_sd

B4 _var
B5_max
B5_mean
B5_med
B5_min
B5_sd
B5_var
B6_max
B6_mean
B6_med
B6_min
B6_sd
B6_var
B7_max
B7_mean
B7_med
B7_min
B7_sd
B7_var

o]
N
3
Q
3
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003 017 003 017 0.00 -0.02 0.0 -0.05 0.01 -0.09 0.02 -0.14 0.01 0.7
0.02 015 001 0.12 0.00 -006 001 -0.11 0.01  -012 002 -0.15 0.00 0.5
002 015 001 011 000 -0.06 001 -0.12 001 -012 003 -0.17 0.00  0.05
001 008 001 010 001 -0.08 001 -0.10 001  -0.12 0.00 -0.04 0.00  0.01
0.00 007 000 003 0.00 0.06 0.0 0.04 0.00 001 0.02 -0.15 0.00 0.05
0.00 005 000 001 0.00 004 000 0.02 0.00 -001 0.03  -0.16 0.00 0.04
004 019 004 021 000 000 000 -0.03 000 -0.07 001 -0.12 001 0.10
003 016 002 015 000 -0.04 001 -0.08 001  -0.10 002 -0.14 0.00 0.07
002 015 002 014 000 -0.04 001 -0.09 001 -0.11 002 -0.16 0.00  0.06
0.01 008 001 0.11 0.00 -007 0.01 -0.09 0.01  -0.12 0.00 -0.04 0.00 0.2
0.01 008 000 006 0.00 007 000 0.06 0.00 003 001 -0.12 0.00 0.06
0.00 006 0.00 005 0.00 0.5 0.0 0.04 0.00 002 001  -0.12 0.00 0.5
0.03 -0.16 0.11 -0.33 0.02 -0.16 0.6 -0.25 0.06 -024 0.07 -0.26 0.02 -0.15
0.02 -0.12 009  -0.30 0.02  -015 0.7 -0.27 0.05  -023 0.07 | -0.27 0.01 -0.12
0.02 -013 011 -0.33 0.02 -015 008 -0.28 0.05 -023 0.09 -0.30 0.02 -0.13
000 -0.07 001 -0.11 001 -0.12 003 -0.17 004 -0.19 001 -0.08 0.01 -0.08
0.02 -0.14 0.09 -0.29 0.00 -0.05 0.01 -0.10 0.00 -0.06 0.05 -0.22 0.01 -0.10
0.02 -0.13 0.08 -0.29 0.00 -0.06 0.2 -0.12 0.00 -0.07 0.07 | -0.26 0.01 -0.10
0.07 -026 021 -0.46 0.04 -020 010 -031 0.07 -026 0.09 -0.30 0.05 -0.22
0.05 -023 020 -0.45 0.04  -019 012 -0.34 0.06 -025 0.10 -0.31 0.04 -0.20
005 -023 022 -0.47 0.04 -019 012 -035 0.06 -025 011 -0.33 0.04 -0.20
002 -0.14 005 -0.22 002 -0.15 005 -0.23 005 -022 002 -0.13 0.02  -0.14
0.05 -023 018 -0.42 0.02 -012 004 -0.21 0.02 -0.14 0.08 -0.28 0.03 -0.18
0.04 -0.19 0.14 -0.38 0.01 -012 0.05 -0.22 0.02  -013 010  -032 0.02 -0.16
0.05 022 006 0.06 0.00 001 0.0 0.03 0.00 -0.05 0.01 -0.12 001 0.1
0.05 022 005 024 0.00 -001 000 001 0.00  -006 0.00 -0.08 001 0.1
0.05 022 006 023 0.00 0.0 0.0 -0.02 0.00 -0.05 0.01 -0.07 001 0.1
002 013 003 024 0.00 -0.04 0.0 -0.02 0.01  -0.07 0.00 -0.08 0.00  0.05
001 009 001 017 0.00 0.06 0.0 -0.05 0.00 -0.01 0.01 -0.01 0.00 0.07
0.01 007 000 0.08 0.00 004 000 0.6 0.00  -002 002 -0.12 0.00 0.5
0.09 030 019 044 0.04 020 008 028 0.03 019 001 0.0 0.06 0.24
0.16 040 036  0.60 0.05 021 0.09 030 0.04 020 0.04 020 0.09 0.30
0.16 040 036 0.60 0.04 021 009 031 0.04 019 0.05 0.22 0.09 0.29
012 035 023 048 003 016 004 021 003 017 002 0.5 0.06 025
0.01 -0.09 001 -0.10 0.00 002 000 004 0.00 -001 0.00 -0.07 0.00 -0.05
0.06 -024 0.13 -0.36 001 -011 0.3 -0.17 0.02 -0.14 0.08 -0.27 0.03 -0.18
0.02 015 004 020 0.02 015 0.03 0.7 0.01 012 0.0 -0.01 0.02 0.3
0.14 037 031 055 0.05 022 009 0.29 0.04 020 0.03 0.7 0.08  0.29
015 039 034 058 005 022 009 029 0.04 019 004 0.9 0.09 0.0
006 025 0.14 038 001 009 002 0.5 001 011 002 0.3 0.03 0.7
0.00 004 000 0.04 001 011 001 011 0.01 0.07 0.00 -0.07 0.00  0.06
0.00 -0.01 0.0 -0.04 0.00 0.6 0.0 0.5 0.00 0.03 0.01 -0.09 0.00 0.1
0.06 025 017 041 0.04 019 0.8 0.9 0.03 018 002 0.14 0.04 0.20




013 036 032 | 057 0.04 021 011 033 0.04 020 007 | 027 0.08 0.7
012 035 032 056 0.04 020 011 033 0.04 019 008 028 0.07 027
009 030 019 044 002 015 005 022 002 016 003 018 0.05  0.23
002 -0.15 004 -0.20 000 -0.03 000 -0.03 000 -0.05 001 -0.11 001 -0.11
0.03 -0.16 004 -0.21 0.00 -0.06 0.00 -0.06 0.01 -0.08 0.02  -0.13 0.02  -0.13
0.09 030 021 046 0.04 021 010 032 0.04 019 003 018 0.06 0.24
014 037 034 058 005 022 011 034 004 021 008 027 0.08  0.29
012 035 032 057 004 021 012 034 004 019 008 029 0.07 027
013 036 025 050 004 019 007 026 004 021 004 021 0.08 0.8
0.09 -029 014 -0.38 0.02 -013 002 -0.14 0.03 -017 003 -0.16 0.05 -0.22
0.07 -027 012 -0.34 0.02 -015 0.02 -0.15 0.03  -0.18 0.03  -0.18 0.05 -0.22
0.08 028 021 045 0.04 020 010 032 0.04 019 004 021 0.06 0.24
012 035 031 056 005 021 012 035 004 021 009 031 0.08 0.8
011 033 030 054 0.04 020 012 035 0.04 019 010 031 0.07 0.26
0.06 024 015 0.38 0.02 015 006 0.25 0.04 = 019 004 0.20 0.04 0.9
0.04 -0.19 008 -0.29 001 -011 002 -0.15 0.03 -0.16 0.03 -0.17 0.02 -0.15
003 -0.18 0.07 -0.26 001 -011 002 -0.15 003 -0.17 003 -0.16 0.02  -0.15
0.08 028 017 042 0.02 016 0.06 024 0.03 016 0.04 0.9 0.05 0.2
013 036 027 052 0.02 015 005 0.22 0.03 018 003 0.17 0.06 0.5
012 035 026 051 0.02 014 005 022 0.03 017 003 0.17 0.06 0.25
015 039 028 053 0.02 013 003 0.17 0.04 020 002 014 0.07 0.26
010 -032 017 -0.41 0.00 -0.05 0.00 -0.05 0.02 -0.15 0.00 -0.06 0.03 -0.18
0.08 -029 013  -0.37 0.01 -0.08 0.00 -0.07 0.03  -017 001  -0.12 0.03 -0.18
013 -036 025 -0.50 001 -011 0.3 -0.16 0.03 -017 0.02 -0.14 0.05 -0.23
011  -032 023 -0.48 0.01 -0.10 0.3 -0.16 0.02  -0.14 001 -0.12 0.04 -0.20
010 -031 022 -0.47 0.01 -009 003 -0.16 0.02 -013 001 -0.12 0.04 -0.19
0.07 -026 0.4 -0.38 0.01 -010 0.3 -0.16 0.02  -013 0.01  -0.07 0.03  -0.17
0.05 -023 009 -0.31 0.00 -0.05 0.00 -0.04 001 -012 0.02 -0.14 0.02 -0.15
0.04 -020 008 -0.28 0.00 -0.05 0.00 -0.06 0.01  -0.11 0.03  -0.16 0.02 -0.14
0.14 038 031 -0.55 0.03 -016 005 -0.23 0.04 -020 004 -0.19 0.07 -0.27
012  -035 028 -0.53 0.02  -0.15 0.06 -0.24 0.03  -0.17 0.03 | -0.18 0.06 -0.24
011 -033 027 -0.52 0.02 -0.14 006 -0.24 0.03 -0.16 0.03 -0.18 0.05 -0.23
0.09 -030 0.19 -0.44 0.02  -0.14 005 -0.22 0.03  -017 0.2  -0.13 0.05 -0.21
0.09 -031 019 -0.44 0.02 -012 002 -0.14 0.03 -0.17 003 -0.18 0.05 -0.22
0.06 -0.25 0.14 -0.38 001 -011 0.02 -0.15 0.02  -0.16 0.05  -0.21 0.04 -0.19
0.09 030 021 046 0.04 021 010 032 0.04 019 0.03 0.8 0.06 0.24
0.14 037 034 058 0.05 022 011 034 0.04 021 008 027 0.08  0.29
012 035 032 057 0.04 021 012 034 0.04 019 0.8 0.9 0.07 0.27
013 036 025 0.0 0.04 019 007 0.26 0.04 021 004 021 0.08 0.8
0.09 -029 0.14 -0.38 0.02 -013 0.02 -0.14 0.03 -0.17 0.03 -0.16 0.05 -0.22
007 -027 012  -0.34 0.02 -015 0.2 -0.15 0.03  -0.18 0.03  -0.18 0.05 -0.22
012 034 026 051 0.05 021 0.8 0.29 0.04 020 0.2 0.3 0.07 0.6
0.16 040 037 061 0.05 023 011 033 0.05 022 005 0.23 0.09 031
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0.15 039 036  0.60 0.05 022 011 034 0.05 022 006 024 0.09 0.0
015 039 032 056 0.05 023 008 0.29 0.06 024 004 020 010 031
003 -0.17 004 -021 001 -0.07 000 -0.06 001 -011 002 -0.13 0.02 -0.14
003 -0.17 005 -0.22 001 -0.08 001 -0.08 001 -011 002 -0.15 0.02  -0.14
0.09 029 021 046 005 021 010 032 0.04 020 0.03 0.7 0.06 0.25
0.14 037 035  0.59 005 023 013 035 0.05 022 008 028 0.09 030
012 035 033 058 005 022 013 036 004 021 009 030 0.08 028
013 036 027 052 004 021 008 0.28 005 023 005 023 0.08  0.29
009 -030 017 -0.41 002 -015 003 -0.17 003 -0.18 004 -0.20 0.05  -0.23
0.07 -027 013 -0.36 0.03 -0.16 0.03 -0.18 0.04  -019 005 -0.23 0.05 -0.22
0.09 029 021 046 005 021 010 032 0.04 020 003 0.16 0.06 0.25
0.14 037 035 059 0.05 023 013 036 0.05 022 008 028 0.09 0.29
012 035 033 058 005 022 013 036 0.04 020 0.09 0.30 0.08 0.28
012 035 026 051 0.04 021 008 0.8 0.05 022 005 0.22 0.08  0.28
0.09 -029 016 -0.40 0.02 -015 003 -0.17 0.03 -0.18 0.04 -0.20 0.05 -0.23
0.06 -025 012 -0.35 0.02 -0.16 0.03 -0.18 0.04 -019 0.05 -0.22 0.05 -0.21
0.09 -030 0.19 -0.44 0.02 -015 0.05 -0.22 0.02 -0.16 0.03 -0.18 0.05 -0.23
013  -036 032 -0.57 0.04 -021 011 -033 0.04 -020 0.07 | -0.27 0.08 -0.27
012 -035 032 -0.56 0.04 -020 011 -0.33 0.04 -019 008 -0.28 0.07 -0.27
0.06 -025 017 -0.41 0.04 -019 008 -0.29 0.03  -018 002  -0.14 0.04 -0.20
0.02 -0.15 0.04 -0.20 0.00 -0.03 0.0 -0.03 0.00 -0.05 0.01 -0.11 001 -0.11
0.03 -0.16 0.04 -0.21 0.00 -0.06 0.00 -0.06 0.01 -0.08 0.02  -0.13 0.02  -0.13
0.00 006 001 0.08 001 012 002 0.2 0.01 009 0.0 -0.04 0.01 0.7
011 033 027 052 0.07 026 011 033 0.06 024 003 0.17 0.08  0.28
0.16 041 041 064 0.07 027 014 038 0.07 027 007 026 011 033
011 033 022 047 0.03 017 005 0.22 0.04 021 003 0.18 0.06 0.24
0.00 001 000 0.00 0.01 008 001 0.8 0.00 005 0.01 -0.08 0.00 0.03
0.00 -0.02 0.0 -0.05 0.00 0.5 0.0 0.03 0.00 002 0.01  -0.09 0.00  0.00
012 -035 022 -047 0.03 -0.17 005 -0.22 0.05 -022 0.05 -0.22 0.08 -0.27
0.08 -029 018 -0.42 0.04 -019 008 -0.28 0.04  -019 006 -0.25 0.06 -0.25
0.04 020 011 -0.33 0.02 -014 006 -0.25 0.02 -013 006 -0.24 0.03 -0.18
0.09 -030 0.14 -0.37 0.06 -0.24 0.9 -0.29 0.05  -023 001  -0.11 0.08 -0.28
0.04 -0.19 008 -0.28 0.00 -0.04 0.0 -0.06 0.01 -0.09 0.3 -0.17 001 -0.12
0.04 -021 009  -0.30 0.00 -0.07 0.01 -0.10 0.01  -0.11 0.04 -0.21 0.02 -0.15
0.00 001 000 0.05 0.00 003 001 0.9 0.00 001 002 014 0.00 0.2
001 011 003 017 0.02 012 004 0.20 0.02 013 005 0.23 001 0.2
001 007 001 011 0.01 009 003 0.6 0.01 007 005 021 0.01 0.7
0.02 014 004 020 0.02 014 004 0.9 0.02 015 0.03 | 0.18 0.02 0.5
0.02 -0.14 004 -0.20 0.02 -014 004 -0.19 0.02 -015 0.04 -0.20 0.02 -0.15
001 -0.11 003 -0.16 001 -012 0.03 -0.16 0.02 -014 002 -0.15 0.01 -0.12
000 -0.03 000 -0.05 000 001 000 0.0 0.00 -0.03 0.00 -0.04 0.00 -0.01
002 015 003 0.16 0.00 0.0 0.00 -0.01 0.00 0.0 0.00 -0.05 0.00  0.06
0.05 023 007 026 0.00 0.04 0.0 0.2 0.00 007 0.01 -0.07 001 0.2
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0.00 006 001  0.08 0.00 | -0.03 0.00 -0.04 0.00  -0.02 0.0 | 0.04 0.00 0.1
0.00 -0.06 001 -0.09 BFLE 0.00 003 000 0.02 0.00 -001 000 -0.05 0.00 -0.01
000 -0.03 000 -0.04 000 001 000 001 000 -0.02 000 -0.01 0.00 -0.01
009 030 021 046 004 021 010 032 004 019 003 018 0.06 024
0.14 037 034 058 0.05 022 011 034 0.04 021 0.08 027 0.08  0.29
012 035 032 057 0.04 021 012 034 0.04 019 008 0.29 0.07 027
013 036 025 050 004 019 007 026 004 021 004 021 0.08 0.8
009 -029 0.4 -0.38 002 -013 002 -0.14 003 -0.17 003 -0.16 0.05 -0.22
007 -027 012 -0.34 002 -0.15 002 -0.15 003 -0.18 003 -0.18 0.05  -0.22
0.00 -0.08 002 -0.18 0.02 -004 004 -0.09 0.04 -006 007 -0.25 0.01 -0.06
0.00 -0.03 003 -0.12 0.03 -013 008 -0.21 0.05  -020 0.09  -0.26 0.01 -0.08
0.00 -0.02 004 -0.17 0.03 -0.16 0.09 -0.28 0.05 -023 011 -0.29 0.01 -0.08
0.00 -0.03 0.00 -0.20 0.01 -0.16 0.03 -0.30 0.03  -023 001 -033 0.00 -0.09
0.00 000 003 -0.03 0.00 -0.12 0.0 -0.17 0.00 -0.17 0.05 -0.09 0.00 -0.05
0.01 -0.07 003 -0.16 0.00 -002 001 -0.06 0.00 -004 006 -0.23 0.00 -0.05
001 010 003 0.16 001 009 002 0.5 0.03 017 001 0.08 0.01 0.8
004 021 016  0.40 0.02 014 007 0.26 0.05 022 006 024 0.03 0.16
004 020 017 041 0.02 013 007 0.26 0.04 021 006 0.5 0.02 0.16
0.07 027 022 047 0.03 018 007 027 0.07 026 006 0.25 0.05 022
0.05 -022 017 -0.41 0.02 -014 005 -0.22 0.02 -015 008 -0.28 0.03 -0.18
0.06 -0.25 0.20 -0.45 0.02  -013 0.04 -0.20 0.02 -0.16 0.06 -0.25 0.04 -0.19
0.00 006 000 005 0.01 007 0.00 0.04 0.01 008 001 0.08 0.00 0.06
0.00 006 000 0.04 0.01 = 0.08 0.0 0.04 0.01 008 001  0.08 0.01 0.7
0.00 007 000 0.04 0.01 008 0.0 0.04 0.01 008 001 0.08 0.01 0.7
0.00 007 000 0.04 0.01 0.08 0.0 0.04 0.01 0.8 0.0 0.7 0.01 0.8
0.00 002 000 0.05 0.00 005 000 0.2 0.00 004 000 0.06 0.00 0.2
0.00 001 0.00 002 0.00 0.7 0.0 0.2 0.00 0.4 0.0 0.06 0.00 = 0.03
001 011 003 0.18 001 011 002 0.14 0.02 014 001 0.10 0.01 0.10
002 0.12 004 020 001 012 003 0.16 002 015 001 0.12 001 011
0.02 013 004 020 002 012 002 016 002 015 001 0.11 001 0.11
0.02 012 005 021 001 012 003 0.17 0.02 015 002 0.14 0.01 0.1
0.00 006 000 0.07 0.00 0.06 0.0 0.06 0.00 0.06 0.0 0.02 0.00 0.06
0.00  0.05 0.00 005 0.00 0.7 0.0 0.5 0.00 007 0.0 001 0.00  0.06
001 009 002 014 0.01 008 001 0.1 0.01 009 001 0.1 0.01 0.10
0.02 013 003 017 001 011 001 0.12 001 012 001 011 0.02 013
002 013 003 018 001 011 001 0.12 001 012 001 011 0.02 0.14
002 013 003 0.16 001 012 001 0.2 0.02 013 001 0.10 0.02 0.4
0.00 002 001 007 0.00 001 0.0 0.06 0.00 002 0.0 0.07 0.00 0.02
0.00 003 000 006 0.00 003 000 0.6 0.00 004 000 006 0.00 0.5
000 -0.01 000 006 000 -0.01 000 0.03 000 -0.01 000 0.02 0.00 -0.03
0.00 000 001 0.08 0.00 -0.01 0.0 0.5 0.00 0.0 0.00 0.04 0.00 -0.02
0.00 000 001 0.08 0.00 -0.01 0.0 0.5 0.00 -0.01 0.00 0.5 0.00 -0.02
0.00 002 001 011 0.00 001 0.0 0.07 0.00 0.2 0.0 0.5 0.00  0.00

LI



VH95_sd 0.00 -0.06 0.00 -0.04 RViEEREET 0.00 -0.07 0.00 -0.04 FViREERSE 0.00 -0.06 0.00 0.00 FVRERES 0.01 -0.08
VH95_var 0.01 -0.07 @ 0.00 -0.06 DVAREERVEL 0.00 -0.07 0.00 -0.04 FVIREERVENR 0.00 -0.06 0.00 0.00 PA/EEERVELS 0.01 -0.08
VV146_max 0.00 0.01 0.00 0.07 ARTISHGED 0.00 0.04 0.00 0.06 ARTISHEDS 0.00 0.06 0.02 0.13 AT EDS 0.00 0.01
VV146_mean 0.00 0.02 0.01 0.08 AALIENEET 0.00 0.05 0.01 0.07 AREISEGEED] 0.00 0.07 0.02 0.14 RANEISHOEEN] 0.00 0.02
VV146_med 0.00 0.02 0.01 (013 \/V146_med 0.00 0.05 0.01 0.07 ART =] 0.00 0.07 0.02 0.14 AR =] 0.00 0.02
VV146_min 0.00 0.02 0.00 0.07 AT 0.00 0.05 0.01 0.07 AAEIE) 0.00 0.07 0.02 [WRT VV146_min 0.00 0.02
VV146_sd 0.00 0.00 0.00 (X[l \V/V146_sd 0.00 0.01 0.00 0.02 AAEIE] 0.00 0.03 0.01 (N3 VV146_sd 0.00 -0.02
VV146_var 0.00 0.00 0.00 0.03 FVAEERVELS 0.00 0.04 0.00 [oXeyam \/\/146 var 0.00 0.04 0.00 0.07 PVASEISRVES 0.00 0.00
VV22_max 0.01 0.10 0.00 0.06 AZPELEYS 0.01 0.09 0.00 (OO Z V22 _max 0.01 0.12 0.00 0.06 AZZENEYS 0.01 0.09
VV22_mean 0.01 0.12 0.01 0.09 RAPPEGEEN 0.01 0.09 0.00 0.05 MAPPENEED 0.02 0.13 0.01 [oXoyam V\/22 mean 0.01 0.09
VV22_med 0.01 0.12 0.01 0.09 PP 0.01 0.09 0.00 0.05 RAPPARED] 0.02 0.14 0.01 0.07 AP 0.01 0.10
VV22_min 0.01 0.12  0.01 0.10 RAZPENIN 0.01 0.08 0.00 0.05 RAPPANI 0.02 0.13 0.00 [Koyam /22 "min 0.01 0.08
VV22_sd 0.00 0.05 0.00 -0.01 RAPYAET| 0.00 0.06 0.00 0.02 RAPPE:] 0.00 0.06 0.00 0.03 PP 0.00 0.06

0.00 0.05 0.00 -0.01 WAPYAEL 0.00 0.07 0.00 0.02 FVAPPINEN 0.00 0.06 0.00 0.02 FVAPPANEN 0.00 0.06
VV44_max 0.00 0.05 0.03 0.16 RAZZENENS 0.00 0.05 0.01 0.12 AV NEN 0.01 0.07 0.02 0.15 RAZZENEN 0.00 0.04

VV44_mean 0.01 0.08  0.03 0.19 RAZZEGEEN 0.01 0.07 0.02 0.14 LTS LN 0.01 0.10 0.03 0.17 LSRN 0.01 0.07
VV44_med 0.01 0.09 0.04 0.19 WZYEGLED] 0.01 0.08 0.02 0.15 RAZYENIED) 0.01 0.10 0.03 0.16 AZZENIE) 0.01 0.08
VV44_min 0.01 0.10  0.04 0.20 PAAZZEI) 0.01 0.08 0.02 0.15 ATl 0.01 0.11 0.03 (ORI V44 “min 0.01 0.09
VV44_sd 0.00 -0.03 0.00 0.06 AZTE| 0.00 -0.01 0.00 0.05 AZEE| 0.00 0.00 0.01 0.09 AZEE| 0.00 -0.04
VV44 var 0.00 -0.03 ' 0.00 0.02 PVAAEEVES 0.00 0.00 0.00 0.04 PNAZZENEN 0.00 0.02 0.01 [JXoyam V44 var 0.00 -0.03
VV95_max 0.00 -0.04 0.00 -0.07 WEREYEN 0.00 -0.05 0.01  -0.08 FNAEERNENS 0.00 -0.06 0.00 -0.02 FNAEEREDS 0.00 -0.05
VV95_mean 0.00 -0.01  0.00 -0.03 MWEEEyLEN 0.00 -0.02 0.00 -0.05 FAAEEREEL 0.00 -0.02 0.00 0.01 RWEEMEEN 0.00 -0.02
VV95_med 0.00 -0.01 0.00 -0.02 RAEREIET 0.00 -0.02 0.00 -0.04 FVAEERES 0.00 -0.02 0.00 [Xeyl VV95_med 0.00 -0.02
VV95_min 0.00 0.00 0.00 -0.01 FVATEER iy 0.00 -0.01 0.00 -0.04 FVAEER iy 0.00 0.00 0.00 0.03 FVAEER ! 0.00 -0.01
VV95_sd 0.01 -0.10 0.02 -0.14 RAEEIE) 0.01 -0.10 0.01 | -0.11 RAVEREED] 0.01 -0.11 0.00 -0.05 FAAVEERL) 0.01 -0.10
VV95_var 0.01 -0.10  0.02 -0.14 RVAEERELS 0.01 -0.09 0.01 -0.10 FNAEERELS 0.01 -0.10 0.00 -0.05 FNAEERELS 0.01 -0.09
GLCM_VH146_con 0.00 0.04 0.00 QU GLCM_VH146_con 0.01 0.11 0.00 (X3 GLCM_VH146_con 0.00 0.05 0.00 (X3 GLCM_VH146_con 0.01 0.10
GLCM_VH146_cor 0.00 0.05  0.00 (XN GLCM_VH146_cor 0.00 0.01 0.00 (ROl GLCM_VH146_cor 0.00 0.01 0.00 = -0.03 [Felfe\ VIRl s 0.00 0.02
GLCM_VH146_dis 0.00 0.02 0.00 QA GLCM_VH146_dis 0.02 0.14 0.01 (M3 GLCM_VH146_dis 0.01 0.09 0.01 (X7l GLCM_VH146_dis 0.01 0.11
GLCM_VH146_eng 0.00 0.04 0.00 [Vl GLCM_VH146_eng 0.00 -0.07 [CRRREE XA GLCIVI_VH146 eng 0.00 -0.04 0.00 @ -0.06 [elfe\ vl ReREl: 0.00 -0.03
GLCM_VH146_ent 0.00 -0.03 0.00 Rl GLCM_VH146_ent 0.01 0.07 0.01 Al GLCM_VH146_ent 0.00 0.05 0.00 (Xl GLCM_VH146_ent 0.00 0.03
GLCM_VH146_homo [eR¥4) 0.00 0.00 oyl GLCM_VH146_homo 0.02 -0.13 [XRRERVE GLCM_VH146_homo 0.01 = -0.09 [(XRRERNE GLCM_VH146_homo 0.01 -0.08
GLCM_VH146_mean | oXoi} 0.09 0.00 (0 GLCM_VH146_mean 0.01 0.10 0.00 (XS GLCM_VH146_mean 0.01 0.10 0.01 [Nl GLCM_VH146_mean 0.01 0.11
GLCM_VH146_sd 0.00 0.03  0.00 R GLCM_VH146_sd 0.03 0.16 0.01 (ol GLCM_VH146_sd 0.01 0.10 0.00 (Xl GLCM_VH146_sd 0.02 0.12
GLCM_VH146_sec 0.00 0.04 0.00 (VO GLCM_VH146_sec 0.00 -0.06 0.01 | -0.08 [cINe\IRYykv IRl 0.00 -0.04 [XUOREE O GLCM_VH146_sec 0.00 -0.02
GLCM_VH22_con 0.00 -0.01 @ 0.00 RUUER GLCM_VH22 con 0.01 0.08 0.01 [N GLCM_VH22 con 0.00 0.06 0.00 [(X-3 GLCM_VH22_con 0.00 0.03
GLCM_VH22_cor 0.00 0.03 0.00 (R GLCM_VH22 cor 0.00 -0.05 0.00 | -0.06 peINe\/IMY;PyRdols 0.00 -0.06 0.00 -0.04 [Felfe\IgPPAde)s 0.00 0.00
GLCM_VH22_dis 0.00 -0.01 @ 0.00 QAR GLCM_VH22 dis 0.02 0.12 0.02 (B GLCM_VH22 dis 0.01 0.10 0.01 (X3 GLCM_VH22_dis 0.00 0.05
GLCM_VH22_eng 0.00 -0.04 0.00 Rl GLCM_VH22_eng 0.02 -0.15 0.04 | -0.20 [CINe ;PP IR=1oF 0.01 -0.11 [(REE ALl GLCM_VH22 eng 0.01 -0.09
GLCM_VH22_ent 0.00 0.04 0.00 (Xl GLCM_VH22 ent 0.02 0.16 0.04 [l GLCM_VH22_ ent 0.01 0.12 0.02 [(AEJ GLCM_VH22_ent 0.01 0.09
GLCM_VH22_homo 0.00 -0.02 0.00 RO GLCM_VH22_homo 0.02 -0.15 (SRR GLCM_VH22_homo 0.02 -0.13 (X RUEEN I GLCM_VH22_homo 0.01 -0.09
GLCM_VH22_mean 0.02 0.13 | 0.05 \WER GLCM_VH22 mean 0.02 0.13 0.03 [(Bt GLCM_VH22_mean 0.02 0.14 0.02 [(RER GLCM_VH22_mean 0.01 0.11
GLCM_VH22_sd 0.00 0.00 0.00 QAN GLCM_VH22 sd 0.02 0.13 0.03 (B GLCM_VH22 sd 0.01 0.10 0.01 (X7l GLCM_VH22 sd 0.00 0.06
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<
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N
<
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GLCM_VH22_sec 0.00 -0.05 0.00 ROl GLCM_VH22_sec 0.02 -0.15 0.04 -0.19 [€lfe\ Iz Pris=e 0.01 -0.11 0.02 = -0.15 [€lHe\ iz PPl 0.01 -0.09
GLCM_VH44_con 0.00 0.03 0.00 ROl GLCM_VH44_con 0.01 0.10 0.00 [(XeZ3 GLCM_VH44_con 0.01 0.07 0.00 [(XeZ3 GLCM_VH44_con 0.02 0.13
GLCM_VH44_cor 0.01 0.07 0.00 ((Xec GLCM_VH44_cor 0.00 0.04 0.00 [(Xekl GLCM_VH44 cor 0.00 0.04 [oXe[ mmEeXorAl  GLCIVI"VH44 “cor 0.00 0.05
GLCM_VH44_dis 0.00 0.03 0.01 ROOEE GLCM_VH44 dis 0.02 0.14 0.00 [N GLCM_VH44_dis 0.01 0.10 0.00 [ GLCM_VH44_dis 0.02 0.14
GLCM_VH44_eng 0.00 -0.02 0.00 (Xl GLCM_VH44_eng 0.03 -0.17 0.02 | -0.15 [eiNe\Y Yty =1 orS 0.01 -0.11 0.02 | -0.13 [ec|Ne YR/ VY o1 oF3 0.01 -0.12
GLCM_VH44 _ent 0.00 0.02 0.00 ROVl GLCM_VH44_ent 0.03 0.18 0.02 [N GLCM_VH44_ent 0.01 0.12 0.02 [(REJ GLCM_VH44_ent 0.02 0.12
GLCM_VH44_homo 0.00 -0.03 0.00 (ool GLCM_VH44_homo 0.02 -0.15 [oXo iR Ne sl GLCIVI_VH44 homo 0.01 -0.09 [oXe iR NeyaR  GLCIVI"VH44 homo 0.01 -0.11
GLCM_VH44_mean 0.03 0.16 0.04 (Nl GLCM_VH44_mean 0.02 0.14 0.02 (MR GLCM_VH44_mean 0.02 0.15 0.02 [\REM GLCM_VH44_mean 0.03 0.17
GLCM_VH44 _sd 0.00 0.05 0.01 RV GLCM_VH44 sd 0.03 0.17 0.01 [Nl GLCM_VH44_sd 0.01 0.12 0.00 [l GLCM_VH44 sd 0.02 0.16
GLCM_VH44_sec 0.00 -0.02 0.00 (o7l GLCM_VH44_sec 0.03 -0.17 0.02 | -0.15 pye{Ne\ MY VY SY-1d 0.01 -0.11 0.02 | -0.13 [yec{Ne\Y/IMY/sVY -1 0.01 -0.11
GLCM_VH95_con 0.00 -0.04 0.00 ROVl GLCM_VH95_con 0.00 0.03 0.00 [Nl GLCM_VH95_con 0.00 0.01 0.00 @ -0.04 [eife\ iz ERREel 0.00 -0.01
GLCM_VH95_cor 0.00 0.02 0.00 ROl GLCM_VH95_cor 0.00 -0.01 0.00 | -0.05 pYe|Ne\ Y LMl 0.00 -0.03 0.00 | -0.03 [ec|Ne\/IMY;EEMe]s 0.00 0.01
GLCM_VH95_dis 0.00 -0.06 0.01 Rl GLCM_VH95_dis 0.00 0.03 0.00 [Nyl GLCM_VH95_dis 0.00 0.01 0.00 -0.02 Felfe\ VI EERGIE 0.00 -0.03
GLCM_VH95_eng 0.00 0.00 0.00 ROl GLCM_VHO5_eng 0.01 -0.10 0.02 | -0.12 [ye{Xe Yz M 0.00 -0.04 0.01 | -0.08 [eciNe Yz M1 0.00 -0.04
GLCM_VH95_ent 0.00 0.00 0.00 (Xl GLCM_VH95_ent 0.01 0.10 0.01 [(RPA GLCM_VH95_ent 0.00 0.04 0.01 [lXe: ) GLCM_VH95_ent 0.00 0.04
GLCM_VH95_homo 0.00 0.02 0.00 (sl GLCM_VH95_homo 0.01 -0.07 (XX RUREVREEN GLCM_VH95_homo 0.00 -0.03 (X[ EENe 3 GLCM_VH95_homo 0.00 -0.02
GLCM_VH95_mean 0.00 -0.02 0.01 (N GLCM_VH95_mean 0.00 -0.01 0.00 (X GLCM_VH95_mean 0.00 0.00 0.00 [(Xo @ GLCM_VHS5_mean 0.00 -0.03
GLCM_VH95_sd 0.00 -0.05 0.01 ROl GLCM_VH95_sd 0.00 0.05 0.00 (N3 GLCM_VH95_sd 0.00 0.02 0.00 -0.02 [Feife)\ Vi ERRSe! 0.00 -0.01
GLCM_VH95_sec 0.00 0.00 0.00 ROVl GLCM_VH95_sec 0.01 -0.10 0.02  -0.12 Felfe) iz RS 0.00 -0.04 0.01 = -0.08 [eife\ iz RS 0.00 -0.04
GLCM_VV146_con 0.00 0.03 0.00 ROl GLCM_VV146_con 0.01 0.09 0.00 [lXe”3 GLCM_VV146_con 0.00 0.04 0.00 [N GLCM_VV146_con 0.01 0.08
GLCM_VV146_cor 0.00 0.06 = 0.00 (X9 GLCM_VV146_cor 0.00 0.03 0.00 (XM GLCM_VV146_cor 0.01 0.08 0.00 -0.01 [Felfe)\AvEe el 0.00 0.03
GLCM_VV146_dis 0.00 0.01 0.01 R GLCM_VV146_dis 0.01 0.12 0.00 (S GLCM_VV146_dis 0.00 0.06 0.00 (X[ GLCM_VV146_dis 0.01 0.09
GLCM_VV146_eng 0.00 -0.02 0.00 (X7l GLCM_VV146_eng 0.02 -0.16 [N RNl GLCM_VV146_eng 0.02  -0.13 0.01 = -0.10 [ lciHe\RAVARSRET o 0.01 -0.10
GLCM_VV146_ent 0.00 0.02 0.01 ROVl GLCM_VV146_ent 0.02 0.16 0.01 (R GLCM_VV146_ent 0.02 0.13 0.01 (K=l GLCM_VV146_ent 0.01 0.11
GLCM_VV146_homo [eXe] 0.02 0.01 (Ol GLCM_VV146_homo 0.01 -0.10 (XNl GLCM_VV146_homo 0.00 -0.05 0.00 | -0.06 [eiNe\Y/IMAVAL M Te]oile) 0.00 -0.07
GLCM_VV146_mean |[geXoy) 0.06 0.01 (BWR GLCM_VV146_mean 0.01 0.09 0.01 [(R¥ GLCM_VV146_mean 0.01 0.11 0.03 (R GLCM_VV146_mean 0.00 0.06
GLCM_VV146_sd 0.00 0.03  0.01 ROyl GLCM_VV146_sd 0.02 0.15 0.00 [Nl GLCM_VV146_sd 0.01 0.09 0.00 [Nl GLCM_VV146_sd 0.01 0.11
GLCM_VV146_sec 0.00 -0.01 0.00 (o[ GLCM_VV146_sec 0.02 -0.15 0.01 | -0.11 pyec{Ne\Y R A'AV- 1o 0.02 -0.13 0.01 | -0.11 pyec{Ne\YA'AT:I=1o 0.01 -0.10
GLCM_VV22_con 0.00 -0.02 @ 0.00 KUYl GLCM_VV22_con 0.00 0.06 0.00 [ GLCM_VV22_con 0.00 0.04 0.00 [yl GLCM_VV22_con 0.00 0.01
GLCM_VV22_cor 0.00 0.03 0.00 RUPA GLCM_VV22 cor 0.00 -0.04 0.01 | -0.07 [e|Ne\Y M APPANL]s 0.00 -0.06 0.00 | -0.06 pe|Ne\/MAPPII]g 0.00 0.01
GLCM_VV22_dis 0.00 -0.03  0.01 U GLCM_VV22 dis 0.01 0.09 0.01 (R GLCM_VV22_dis 0.00 0.06 0.00 (X3 GLCM /22 dis 0.00 0.02
GLCM_VV22_eng 0.00 -0.03 0.00 (0l GLCM_VV22_eng 0.02 -0.13 0.03 | -0.17 [cie\MAPPI-1T 4 0.01 -0.08 (ORI GLCM_VV22_eng 0.01 -0.09
GLCM_VV22_ent 0.00 0.03  0.00 RO GLCM_VV22_ent 0.02 0.13 0.03 [(RYA GLCM_VV22_ent 0.01 0.08 0.01 (Xl GLCM_VV22_ent 0.01 0.09
GLCM_VV22_homo 0.00 0.00 0.00 (sp M GLCM_VV22_homo 0.02 -0.14 0.03 | -0.18 [e[Xe\YIMAYP¥A;le]yle] 0.01 -0.11 0.01 | -0.11 [ge{Xe\Y/IMAYP»A;Telyle] 0.00 -0.07
GLCM_VV22_mean 0.02 0.13 | 0.01 (VA GLCM_VV22_mean 0.01 0.11 0.01 (X GLCM_VV22_mean 0.02 0.15 0.01 [N GLCM_VV22_mean 0.01 0.11
GLCM_VV22_sd 0.00 -0.03 0.01 RO GLCM_VV22_sd 0.01 0.09 0.01 (N GLCM_VV22_sd 0.00 0.06 0.00 (X2 GLCM_VV22_sd 0.00 0.02
GLCM_VV22_sec 0.00 -0.02 @ 0.00 (Xo/l GLCM_VV22_sec 0.02 -0.13 [ONe IR VN VAR GLCIVI /22 sec 0.01 -0.07 0.01 = -0.09 [elfe\APPI Te 0.01 -0.09
GLCM_VV44_con 0.00 0.01 0.01 ROl GLCM_VV44_con 0.00 0.07 0.00 [l GLCM_VV44 con 0.00 0.05 0.00 [lXeZ38 GLCM_VV44 con 0.01 0.09
GLCM_VV44_cor 0.01 0.08 0.00 (X3 GLCM_\VV44 cor 0.00 0.02 0.00 (XM GLCM_VV44 cor 0.00 0.03 0.00 -0.02 [e|fe\ A ee]s 0.00 0.04
GLCM_VV44_dis 0.00 -0.01 o0.01 ROV GLCM_VV44_dis 0.01 0.10 0.00 (X2 GLCM_VV44_dis 0.01 0.07 0.00 (XSl GLCM_VV44_dis 0.01 0.09
GLCM_VV44_eng 0.00 -0.01 0.01 (Xo:J GLCM_VV44_eng 0.03 -0.17 0.02 = -0.12 [e{He)\ A=Y o 0.02 -0.14 0.02 = -0.13 [cHe)\ RAZ =T s 0.01 -0.11
GLCM_VV44_ent 0.00 0.01 0.01 Ol GLCM_VV44_ent 0.03 0.17 0.01 [(\R¥3 GLCM_VV44_ent 0.02 0.14 0.01 [\RYA GLCM_VV44_ent 0.01 0.11
GLCM_VV44_homo 0.00 0.02 0.01 (Xl GLCM_VV44_homo 0.02 -0.14 0.01 | -0.09 [e|Ne\ I A'Z 73 Te]gyle} 0.01 -0.09 0.01 | -0.09 [e{Ne\/ I AZ Y3 le]gqle} 0.01 -0.08

LV



GLCM_VV44_mean
GLCM_VV44_sd
GLCM_VV44_sec
GLCM_VV95_con
GLCM_VV95_cor
GLCM_VV95_dis

GLCM_VV95_eng
GLCM_VV95_ent

GLCM_VV95_homo
GLCM_VV95_mean

GLCM_VV95_sd
GLCM_VV95_sec

0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.11
0.00
-0.01
-0.04
0.03
-0.04
0.02
-0.02
0.06
-0.03
-0.07
0.02

0.04
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.01
0.00

0.20
-0.12
0.07
-0.07
-0.02
-0.07
0.02
-0.02
0.05
-0.02
-0.11
0.02

GLCM_VV44_mean
GLCM_VV44_sd
GLCM_VV44_sec
GLCM_VV95_con
GLCM_VV95_cor
GLCM_VV95_dis

GLCM_VV95_eng
GLCM_VV95_ent

GLCM_VV95_homo
GLCM_VV95_mean

GLCM_VV95_sd
GLCM_VV95_sec

0.01
0.02
0.03
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.01

0.10
0.12
-0.17
0.02
-0.02
0.02
-0.09
0.09
-0.08
-0.02
0.04
-0.08

0.03
0.00
0.02
0.00
0.00
0.00
0.01
0.01
0.01
0.00
0.00
0.01

0.17
0.05
-0.13
0.01
-0.04
0.01
-0.10
0.11
-0.08
-0.04
0.01
-0.10

GLCM_VV44_mean
GLCM_VV44_sd
GLCM_VV44_sec
GLCM_VV95_con
GLCM_VV95_cor
GLCM_VV95_dis

GLCM_VV95_eng
GLCM_VV95_ent

GLCM_VV95_homo
GLCM_VV95_mean

GLCM_VV95_sd
GLCM_VV95_sec

0.02
0.01
0.02
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.13
0.09
-0.14
0.00
-0.04
0.00
-0.02
0.02
-0.05
-0.01
0.01
-0.02

0.03
0.00
0.02
0.00
0.00
0.00
0.01
0.01
0.00
0.00
0.00
0.01

0.18
0.06
-0.13
-0.02
-0.02
-0.02
-0.08
0.09
-0.05
0.03
-0.01
-0.08

GLCM_VV44_mean
GLCM_VV44_sd
GLCM_VV44_sec
GLCM_VV95_con
GLCM_VV95_cor
GLCM_VV95_dis

GLCM_VV95_eng
GLCM_VV95_ent

GLCM_VV95_homo
GLCM_VV95_mean

GLCM_VV95_sd
GLCM_VV95_sec

0.01
0.01
0.01
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00
0.00

0.10
0.11
-0.10
-0.02
0.01
-0.02
-0.04
0.04
-0.01
-0.04
-0.02
-0.04
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C. Regression

I.  Mean Vegetation Height — Cross-validation with GEDI Data
Table 35: Calculating the R?2 RMSE and MAE values between all ten regressions based on the RH50 GEDI data and the selected GEDI validation plots.

Validation of RH50 regression with GEDI RH50 data
All bands

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)

GEDI plots vall 0.28 6.37 5.13 0.28 6.37 5.24 0.24 6.57 5.21 0.22 6.62 5.26 0.26 5.20 5.20
GEDI plots val2 0.32 6.63 5.30 0.30 6.67 5.39 0.26 6.94 5.52 0.25 6.96 5.54 0.29 5.49 5.49
GEDI plots val3 0.28 6.60 5.53 0.29 6.62 5.71 0.24 6.83 5.84 0.24 6.84 5.84 0.24 5.76 5.76
GEDI plots val4 0.36 6.37 5.11 0.35 6.46 5.18 0.36 6.53 5.20 0.36 6.53 5.20 0.36 5.21 5.21
GEDI plots val5 0.30 6.45 5.28 0.32 6.37 5.06 0.25 6.65 5.22 0.25 6.67 5.24 0.29 5.21 5.21
GEDI plots val6 0.41 6.04 4.67 0.32 6.35 4.95 0.27 6.53 5.20 0.28 6.47 5.14 0.24 5.20 5.20
GEDI plots val7 0.36 6.02 4.76 0.32 6.13 4.87 0.28 6.32 5.06 0.27 6.35 5.07 0.29 4.96 4.96
GEDI plots val8 0.26 6.51 4.99 0.27 6.50 4.93 0.26 6.51 4.94 0.26 6.53 4.95 0.26 4.99 4.99
GEDI plots val9 0.24 6.36 4.83 0.24 6.35 4.85 0.20 6.51 4.89 0.19 6.54 491 0.22 4.76 4.76
GEDI plots val10 0.29 6.30 4.95 0.26 6.42 4.94 0.29 6.33 4.89 0.28 6.36 4.89 0.29 4,94 4,94
mean 0.31 6.36 5.05 0.30 6.42 5.11 0.26 6.57 5.20 0.26 6.59 5.20 0.27 5.17 5.17

ii.  Max Vegetation Height — Cross-validation with GEDI Data
Table 36: Calculating the R? RMSE and MAE values between all ten regressions based on the RH100 GEDI data and the selected GEDI validation plots.

Validation of RH100 regression with GEDI RH100 data

(m) (m) (m) (m) (m) (m) (m) (m) (m) (m)
GEDI plots vall 0.19 7.75 5.92 0.17 7.84 6.03 0.10 8.14 6.42 0.07 8.32 6.27 0.12 8.07 6.67
| RH1002 | GEDI plots val2 0.11 8.30 6.90 0.13 8.22 6.49 0.04 8.64 7.06 0.09 8.35 7.00 0.06 8.52 6.74
| RH1003 | GEDI plots val3 0.28 7.51 6.09 0.26 7.65 6.16 0.17 8.02 6.31 0.12 8.26 6.31 0.18 7.99 6.54
GEDI plots val4 0.11 8.36 6.31 0.10 8.41 6.44 0.06 8.60 6.82 0.08 8.47 6.78 0.06 8.54 6.76
| RH1005 | GEDI plots val5 0.40 6.90 5.75 0.37 7.06 5.91 0.28 7.50 6.25 0.23 7.66 6.20 0.29 7.71 6.23
GEDI plots val6 0.26 7.82 6.33 0.19 8.14 6.61 0.15 8.33 6.80 0.08 8.40 6.85 0.16 8.33 6.87
GEDI plots val7 0.34 7.37 5.79 0.31 7.60 6.03 0.23 7.90 6.22 0.20 8.07 6.50 0.19 8.21 6.42
GEDI plots val8 0.24 7.62 6.09 0.23 7.72 6.26 0.26 7.75 6.24 0.13 8.19 6.52 0.17 8.09 6.62
GEDI plots val9 0.25 7.40 6.09 0.22 7.54 6.10 0.22 7.63 6.23 0.08 8.23 6.47 0.13 7.99 6.61
GEDI plots val10 0.52 6.31 5.34 0.31 7.30 6.19 0.26 7.47 6.33 0.15 7.91 6.61 0.17 7.98 6.68
mean 0.27 7.51 6.06 0.23 7.75 6.22 0.18 7.98 6.47 0.12 8.17 6.55 0.15 8.15 6.61
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iii. ~ Foliage Height Diversity
Table 37: Calculating the R2 RMSE and MAE values between all ten regressions based on the FHD GEDI data and the selected GEDI validation plots.

Validation of FHD regression with GEDI FHD data

__

R | RWSE | MAE | R2_ | RMSE | MAE_ | R | RVMSE | MAE | R2 | RMSE | WMAE_| R | RMSE | MAE |
GEDI plots vall 0.29 0.25 0.19 0.29 0.25 0.19 0.21 0.27 0.19 0.16 0.27 0.20 0.18 0.27 0.20
| RH1002 | GEDI plots val2 0.26 0.26 0.19 0.21 0.26 0.19 0.17 0.27 0.20 0.16 0.27 0.20 0.16 0.27 0.20
| RH1003 | GEDI plots val3 0.06 0.45 0.39 0.07 0.4 0.39 0.05 0.44 0.38 0.10 0.44 0.39 0.05 0.44 0.38
GEDI plots val4 0.05 0.45 0.38 0.04 0.45 0.38 0.01 0.48 0.41 0.02 0.44 0.38 0.00 0.49 0.42
| RH1005 | GEDI plots val5 0.08 0.45 0.38 0.10 0.45 0.39 0.16 0.43 0.37 0.02 0.47 0.42 0.13 0.43 0.37
GEDI plots val6 0.04 0.45 0.38 0.05 0.44 0.38 0.00 0.45 0.39 0.00 0.45 0.40 0.00 0.45 0.40
GEDI plots val7 0.06 0.48 0.43 0.05 0.46 0.41 0.02 0.46 0.41 0.01 0.45 0.40 0.02 0.45 0.40
GEDI plots val8 0.15 0.43 0.38 0.11 0.44 0.39 0.11 0.44 0.39 0.05 0.44 0.39 0.08 0.45 0.40
GEDI plots val9 0.42 0.22 0.17 0.40 0.22 0.18 0.39 0.22 0.18 0.24 0.24 0.20 0.37 0.22 0.19
GEDI plots val10 031 0.21 0.17 0.32 0.21 0.17 0.34 0.21 0.17 0.27 0.22 0.17 0.33 0.22 0.17
mean 0.17 0.36 031 0.16 0.36 0.31 0.14 0.37 0.31 0.10 0.37 0.32 0.13 0.37 0.31

iv. ~ Aboveground Biomass Density
Table 38: Calculating the R2 RMSE and MAE values between all ten regressions based on the AGBD GEDI data and the selected GEDI validation plots.

Validation of AGBD regression with GEDI AGBD data
__
(Mg/ha) | (Mg/ha) (Mg/ha) | (Mg/ha) (Mg/ha) | (Mg/ha) (Mg/ha (Mg/ha) (Mg/ha) | (Mg/ha)
GEDI plots vall 0.20 89.26 70.11 0.17 90.76 72.51 0.06 97.06 75.79 0.12 93.23 74.15
GEDI plots val2 0.29 86.94 67.87 0.38 84.15 65.70 0.23 91.09 72.46 - - - 0.33 86.63 67.22
GEDI plots val3 0.38 82.73 64.07 0.26 89.16 70.48 0.16 94.61 76.50 - - - 0.23 91.21 72.93
GEDI plots val4 0.29 85.93 66.59 0.25 88.24 65.93 0.15 93.67 72.05 - - - 0.24 89.00 67.04
GEDI plots val5 0.32 87.89 66.61 0.21 93.50 68.70 0.11 98.53 71.99 - - - 0.25 92.35 67.65
GEDI plots val6 0.31 91.99 68.28 0.24 96.42 72.29 0.18 99.87 74.23 - - - 0.27 96.82 71.37
GEDI plots val7 0.15 93.16 72.86 0.16 92.66 73.09 0.11 94.80 74.09 - - - 0.13 94.41 74.74
GEDI plots val8 0.31 87.16 70.12 0.30 88.34 70.12 0.18 94.80 76.12 - - - 0.20 93.53 74.82
GEDI plots val9 0.23 91.66 69.36 0.28 88.97 67.39 0.25 91.38 69.73 - - - 0.27 90.50 67.80
GEDI plots val10 0.23 84.40 69.18 0.17 88.02 71.32 0.13 89.85 72.95 - - - 0.19 87.09 69.10
mean 0.27 88.11 68.51 0.24 90.02 69.75 0.16 94.57 73.59 - - - 0.22 91.48 70.68
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D. Study Area Characteristics

Tree Cover Density (TCD) distribution across slope

100%
90% Figure 49: Tree Cover Density (%) distribution
80% across different slope inclinations in percent.
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Forest Type (DLT) distribution across slope
Figure 50: Dominant Leafe Type (DLT) distribution
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across different slope inclinations in percent.
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